Future of Code with Generative AI: Transparency and Safety in the Era of AI Generated Software
- URL: http://arxiv.org/abs/2505.20303v1
- Date: Sun, 18 May 2025 05:01:41 GMT
- Title: Future of Code with Generative AI: Transparency and Safety in the Era of AI Generated Software
- Authors: David Hanson,
- Abstract summary: This study addresses the critical need for transparency and safety in AI generated code.<n>We analyze market opportunities for detecting AI-generated code and discuss the challenges associated with managing increasing complexity.<n>This study investigates the longterm implications of AI generated code, including its potential role in the development of artificial general intelligence and its impact on human AI interaction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As artificial intelligence becomes increasingly integrated into software development processes, the prevalence and sophistication of AI-generated code continue to expand rapidly. This study addresses the critical need for transparency and safety in AI generated code by examining the current landscape, identifying potential risks, and exploring future implications. We analyze market opportunities for detecting AI-generated code, discuss the challenges associated with managing increasing complexity, and propose solutions to enhance transparency and functionality analysis. Furthermore, this study investigates the longterm implications of AI generated code, including its potential role in the development of artificial general intelligence and its impact on human AI interaction. In conclusion, we emphasize the importance of proactive measures for ensuring the responsible development and deployment of AI in software engineering.
Related papers
- Open and Sustainable AI: challenges, opportunities and the road ahead in the life sciences [50.9036832382286]
We review the increased erosion of trust in AI research outputs, driven by the issues of poor reusability.<n>We discuss the fragmented components of the AI ecosystem and lack of guiding pathways to best support Open and Sustainable AI.<n>Our work connects researchers with relevant AI resources, facilitating the implementation of sustainable, reusable and transparent AI.
arXiv Detail & Related papers (2025-05-22T12:52:34Z) - Information Retrieval in the Age of Generative AI: The RGB Model [77.96475639967431]
This paper presents a novel quantitative approach to shed light on the complex information dynamics arising from the growing use of generative AI tools.<n>We propose a model to characterize the generation, indexing, and dissemination of information in response to new topics.<n>Our findings suggest that the rapid pace of generative AI adoption, combined with increasing user reliance, can outpace human verification, escalating the risk of inaccurate information proliferation.
arXiv Detail & Related papers (2025-04-29T10:21:40Z) - Exploring Gen-AI applications in building research and industry: A review [10.154329382433213]
This paper investigates the transformative potential of Generative AI (Gen-AI) technologies within the building industry.<n>By leveraging these advanced AI tools, the study explores their application across key areas such as automated compliance checking and building design assistance.<n>The paper concludes with a comprehensive analysis of the current capabilities of Gen-AI in the building industry.
arXiv Detail & Related papers (2024-10-01T21:59:08Z) - The Role of Code Proficiency in the Era of Generative AI [10.524937623398003]
Generative AI models are becoming integral to the developer workspace.
However, challenges emerge due to the 'black box' nature of many of these models.
This position paper advocates for a 'white box' approach to these generative models.
arXiv Detail & Related papers (2024-04-08T06:20:42Z) - Security Risks Concerns of Generative AI in the IoT [9.35121449708677]
In an era where the Internet of Things (IoT) intersects increasingly with generative Artificial Intelligence (AI), this article scrutinizes the emergent security risks inherent in this integration.
We explore how generative AI drives innovation in IoT and we analyze the potential for data breaches when using generative AI and the misuse of generative AI technologies in IoT ecosystems.
arXiv Detail & Related papers (2024-03-29T20:28:30Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Materiality and Risk in the Age of Pervasive AI Sensors [9.180189171335744]
We highlight the dimensions of risk associated with AI systems that arise from the material affordances of sensors and their underlying calculative models.<n>We propose a sensor-sensitive framework for diagnosing these risks, complementing existing approaches such as the US National Institute of Standards and Technology AI Risk Management Framework and the European Union AI Act.
arXiv Detail & Related papers (2024-02-17T03:47:38Z) - Exploring the intersection of Generative AI and Software Development [0.0]
The synergy between generative AI and Software Engineering emerges as a transformative frontier.
This whitepaper delves into the unexplored realm, elucidating how generative AI techniques can revolutionize software development.
It serves as a guide for stakeholders, urging discussions and experiments in the application of generative AI in Software Engineering.
arXiv Detail & Related papers (2023-12-21T19:23:23Z) - A Vision for Operationalising Diversity and Inclusion in AI [5.4897262701261225]
This study seeks to envision the operationalization of the ethical imperatives of diversity and inclusion (D&I) within AI ecosystems.
A significant challenge in AI development is the effective operationalization of D&I principles.
This paper proposes a vision of a framework for developing a tool utilizing persona-based simulation by Generative AI (GenAI)
arXiv Detail & Related papers (2023-12-11T02:44:39Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
We describe risks that include large-scale social harms, malicious uses, and irreversible loss of human control over autonomous AI systems.
There is a lack of consensus about how exactly such risks arise, and how to manage them.
Present governance initiatives lack the mechanisms and institutions to prevent misuse and recklessness, and barely address autonomous systems.
arXiv Detail & Related papers (2023-10-26T17:59:06Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.