Reasoning in Neurosymbolic AI
- URL: http://arxiv.org/abs/2505.20313v1
- Date: Thu, 22 May 2025 11:57:04 GMT
- Title: Reasoning in Neurosymbolic AI
- Authors: Son Tran, Edjard Mota, Artur d'Avila Garcez,
- Abstract summary: principled integration of reasoning and learning in neural networks is a main objective of the area of neurosymbolic Artificial Intelligence.<n>A simple energy-based neurosymbolic AI system is described that can represent and reason formally about any propositional logic formula.
- Score: 2.25467522343563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge representation and reasoning in neural networks have been a long-standing endeavor which has attracted much attention recently. The principled integration of reasoning and learning in neural networks is a main objective of the area of neurosymbolic Artificial Intelligence (AI). In this chapter, a simple energy-based neurosymbolic AI system is described that can represent and reason formally about any propositional logic formula. This creates a powerful combination of learning from data and knowledge and logical reasoning. We start by positioning neurosymbolic AI in the context of the current AI landscape that is unsurprisingly dominated by Large Language Models (LLMs). We identify important challenges of data efficiency, fairness and safety of LLMs that might be addressed by neurosymbolic reasoning systems with formal reasoning capabilities. We then discuss the representation of logic by the specific energy-based system, including illustrative examples and empirical evaluation of the correspondence between logical reasoning and energy minimization using Restricted Boltzmann Machines (RBM). Learning from data and knowledge is also evaluated empirically and compared with a symbolic, neural and a neurosymbolic system. Results reported in this chapter in an accessible way are expected to reignite the research on the use of neural networks as massively-parallel models for logical reasoning and promote the principled integration of reasoning and learning in deep networks. We conclude the chapter with a discussion of the importance of positioning neurosymbolic AI within a broader framework of formal reasoning and accountability in AI, discussing the challenges for neurosynbolic AI to tackle the various known problems of reliability of deep learning.
Related papers
- Model-Grounded Symbolic Artificial Intelligence Systems Learning and Reasoning with Model-Grounded Symbolic Artificial Intelligence Systems [7.000073566770884]
Neurosymbolic artificial intelligence (AI) systems combine neural network and classical symbolic AI mechanisms.<n>We develop novel learning and reasoning approaches that preserve structural similarities to traditional learning and reasoning paradigms.
arXiv Detail & Related papers (2025-07-14T01:34:05Z) - Formal Explanations for Neuro-Symbolic AI [28.358183683756028]
This paper proposes a formal approach to explaining the decisions of neuro-symbolic systems.
It first computes a formal explanation for the symbolic component of the system, which serves to identify a subset of the individual parts of neural information that needs to be explained.
This is followed by explaining only those individual neural inputs, independently of each other, which facilitates succinctness of hierarchical formal explanations.
arXiv Detail & Related papers (2024-10-18T07:08:31Z) - Towards Efficient Neuro-Symbolic AI: From Workload Characterization to Hardware Architecture [22.274696991107206]
Neuro-symbolic AI emerges as a promising paradigm, fusing neural and symbolic approaches to enhance interpretability, robustness, and trustworthiness.
Recent neuro-symbolic systems have demonstrated great potential in collaborative human-AI scenarios with reasoning and cognitive capabilities.
We first systematically categorize neuro-symbolic AI algorithms, and then experimentally evaluate and analyze them in terms of runtime, memory, computational operators, sparsity, and system characteristics.
arXiv Detail & Related papers (2024-09-20T01:32:14Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - IID Relaxation by Logical Expressivity: A Research Agenda for Fitting Logics to Neurosymbolic Requirements [50.57072342894621]
We discuss the benefits of exploiting known data dependencies and distribution constraints for Neurosymbolic use cases.
This opens a new research agenda with general questions about Neurosymbolic background knowledge and the expressivity required of its logic.
arXiv Detail & Related papers (2024-04-30T12:09:53Z) - A Complexity Map of Probabilistic Reasoning for Neurosymbolic Classification Techniques [6.775534755081169]
We develop a unified formalism for four probabilistic reasoning problems.<n>Then, we compile several known and new tractability results into a single complexity map of probabilistic reasoning.<n>We build on this complexity map to characterize the domains of scalability of several techniques.
arXiv Detail & Related papers (2024-04-12T11:31:37Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Towards Data-and Knowledge-Driven Artificial Intelligence: A Survey on Neuro-Symbolic Computing [73.0977635031713]
Neural-symbolic computing (NeSy) has been an active research area of Artificial Intelligence (AI) for many years.
NeSy shows promise of reconciling the advantages of reasoning and interpretability of symbolic representation and robust learning in neural networks.
arXiv Detail & Related papers (2022-10-28T04:38:10Z) - Knowledge-based Analogical Reasoning in Neuro-symbolic Latent Spaces [20.260546238369205]
We propose a framework that combines the pattern recognition abilities of neural networks with symbolic reasoning and background knowledge.
We take inspiration from the 'neural algorithmic reasoning' approach [DeepMind 2020] and use problem-specific background knowledge.
We test this on visual analogy problems in RAVENs Progressive Matrices, and achieve accuracy competitive with human performance.
arXiv Detail & Related papers (2022-09-19T04:03:20Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AI aims to combine interpretability of symbolic techniques with the ability of deep learning to learn from raw data.
We introduce Neuro-Symbolic Inductive Learner (NSIL), an approach that trains a general neural network to extract latent concepts from raw data.
NSIL learns expressive knowledge, solves computationally complex problems, and achieves state-of-the-art performance in terms of accuracy and data efficiency.
arXiv Detail & Related papers (2022-05-25T12:41:59Z) - Neurosymbolic AI: The 3rd Wave [1.14219428942199]
Concerns about trust, safety, interpretability and accountability of AI were raised by influential thinkers.
Many have identified the need for well-founded knowledge representation and reasoning to be integrated with deep learning.
Neural-symbolic computing has been an active area of research seeking to bring together robust learning in neural networks with reasoning and explainability.
arXiv Detail & Related papers (2020-12-10T18:31:38Z) - Neuro-symbolic Architectures for Context Understanding [59.899606495602406]
We propose the use of hybrid AI methodology as a framework for combining the strengths of data-driven and knowledge-driven approaches.
Specifically, we inherit the concept of neuro-symbolism as a way of using knowledge-bases to guide the learning progress of deep neural networks.
arXiv Detail & Related papers (2020-03-09T15:04:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.