Learning and Interpreting Gravitational-Wave Features from CNNs with a Random Forest Approach
- URL: http://arxiv.org/abs/2505.20357v1
- Date: Mon, 26 May 2025 07:33:27 GMT
- Title: Learning and Interpreting Gravitational-Wave Features from CNNs with a Random Forest Approach
- Authors: Jun Tian, He Wang, Jibo He, Yu Pan, Shuo Cao, Qingquan Jiang,
- Abstract summary: We propose a hybrid architecture that combines a CNN-based feature extractor with a random forest (RF) classifier.<n>Our method introduces four physically interpretable metrics - variance, signal-to-noise ratio (SNR), waveform overlap, and peak amplitude.<n>Tested on long-duration strain datasets, our hybrid model outperforms a baseline CNN model.
- Score: 7.941186048213039
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional neural networks (CNNs) have become widely adopted in gravitational wave (GW) detection pipelines due to their ability to automatically learn hierarchical features from raw strain data. However, the physical meaning of these learned features remains underexplored, limiting the interpretability of such models. In this work, we propose a hybrid architecture that combines a CNN-based feature extractor with a random forest (RF) classifier to improve both detection performance and interpretability. Unlike prior approaches that directly connect classifiers to CNN outputs, our method introduces four physically interpretable metrics - variance, signal-to-noise ratio (SNR), waveform overlap, and peak amplitude - computed from the final convolutional layer. These are jointly used with the CNN output in the RF classifier to enable more informed decision boundaries. Tested on long-duration strain datasets, our hybrid model outperforms a baseline CNN model, achieving a relative improvement of 21\% in sensitivity at a fixed false alarm rate of 10 events per month. Notably, it also shows improved detection of low-SNR signals (SNR $\le$ 10), which are especially vulnerable to misclassification in noisy environments. Feature attribution via the RF model reveals that both CNN-extracted and handcrafted features contribute significantly to classification decisions, with learned variance and CNN outputs ranked among the most informative. These findings suggest that physically motivated post-processing of CNN feature maps can serve as a valuable tool for interpretable and efficient GW detection, bridging the gap between deep learning and domain knowledge.
Related papers
- Noise-Resilient Unsupervised Graph Representation Learning via Multi-Hop Feature Quality Estimation [53.91958614666386]
Unsupervised graph representation learning (UGRL) based on graph neural networks (GNNs)
We propose a novel UGRL method based on Multi-hop feature Quality Estimation (MQE)
arXiv Detail & Related papers (2024-07-29T12:24:28Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Continuous approximation by convolutional neural networks with a
sigmoidal function [0.0]
We present a class of convolutional neural networks (CNNs) called non-overlapping CNNs.
We prove that such networks with sigmoidal activation function are capable of approximating arbitrary continuous function defined on compact input sets with any desired degree of accuracy.
arXiv Detail & Related papers (2022-09-27T12:31:36Z) - Lost Vibration Test Data Recovery Using Convolutional Neural Network: A
Case Study [0.0]
This paper proposes a CNN algorithm for the Alamosa Canyon Bridge as a real structure.
Three different CNN models were considered to predict one and two malfunctioned sensors.
The accuracy of the model was increased by adding a convolutional layer.
arXiv Detail & Related papers (2022-04-11T23:24:03Z) - New SAR target recognition based on YOLO and very deep multi-canonical
correlation analysis [0.1503974529275767]
This paper proposes a robust feature extraction method for SAR image target classification by adaptively fusing effective features from different CNN layers.
Experiments on the MSTAR dataset demonstrate that the proposed method outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2021-10-28T18:10:26Z) - Examining convolutional feature extraction using Maximum Entropy (ME)
and Signal-to-Noise Ratio (SNR) for image classification [0.6875312133832078]
Convolutional Neural Networks (CNNs) specialize in feature extraction rather than function mapping.
In this paper, we examine the feature extraction capabilities of CNNs using Maximum Entropy (ME) and Signal-to-Noise Ratio (SNR)
We show that the classification accuracy or performance of CNNs is greatly dependent on the amount, complexity and quality of the signal information present in the input data.
arXiv Detail & Related papers (2021-05-10T03:58:06Z) - Fusion of CNNs and statistical indicators to improve image
classification [65.51757376525798]
Convolutional Networks have dominated the field of computer vision for the last ten years.
Main strategy to prolong this trend relies on further upscaling networks in size.
We hypothesise that adding heterogeneous sources of information may be more cost-effective to a CNN than building a bigger network.
arXiv Detail & Related papers (2020-12-20T23:24:31Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
We introduce a Convolutional Neural Network (CNN) that is trained from mutli-channel data of the true array manifold matrix.
We train a CNN in the low-SNR regime to predict DoAs across all SNRs.
Our robust solution can be applied in several fields, ranging from wireless array sensors to acoustic microphones or sonars.
arXiv Detail & Related papers (2020-11-17T12:52:18Z) - Deep learning for gravitational-wave data analysis: A resampling
white-box approach [62.997667081978825]
We apply Convolutional Neural Networks (CNNs) to detect gravitational wave (GW) signals of compact binary coalescences, using single-interferometer data from LIGO detectors.
CNNs were quite precise to detect noise but not sensitive enough to recall GW signals, meaning that CNNs are better for noise reduction than generation of GW triggers.
arXiv Detail & Related papers (2020-09-09T03:28:57Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
We show a ResNet-type CNN can attain the minimax optimal error rates in important function classes.
We derive approximation and estimation error rates of the aformentioned type of CNNs for the Barron and H"older classes.
arXiv Detail & Related papers (2019-03-24T19:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.