What Changed? Detecting and Evaluating Instruction-Guided Image Edits with Multimodal Large Language Models
- URL: http://arxiv.org/abs/2505.20405v1
- Date: Mon, 26 May 2025 18:00:10 GMT
- Title: What Changed? Detecting and Evaluating Instruction-Guided Image Edits with Multimodal Large Language Models
- Authors: Lorenzo Baraldi, Davide Bucciarelli, Federico Betti, Marcella Cornia, Lorenzo Baraldi, Nicu Sebe, Rita Cucchiara,
- Abstract summary: DICE is a model designed to detect localized differences between the original and the edited image.<n>It is trained using a strategy that leverages self-supervision, distillation from inpainting networks, and full supervision.<n>We demonstrate that DICE effectively identifies coherent edits, effectively evaluating images generated by different editing models with a strong correlation with human judgment.
- Score: 88.398085358514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Instruction-based image editing models offer increased personalization opportunities in generative tasks. However, properly evaluating their results is challenging, and most of the existing metrics lag in terms of alignment with human judgment and explainability. To tackle these issues, we introduce DICE (DIfference Coherence Estimator), a model designed to detect localized differences between the original and the edited image and to assess their relevance to the given modification request. DICE consists of two key components: a difference detector and a coherence estimator, both built on an autoregressive Multimodal Large Language Model (MLLM) and trained using a strategy that leverages self-supervision, distillation from inpainting networks, and full supervision. Through extensive experiments, we evaluate each stage of our pipeline, comparing different MLLMs within the proposed framework. We demonstrate that DICE effectively identifies coherent edits, effectively evaluating images generated by different editing models with a strong correlation with human judgment. We publicly release our source code, models, and data.
Related papers
- DeltaVLM: Interactive Remote Sensing Image Change Analysis via Instruction-guided Difference Perception [0.846600473226587]
We introduce remote sensing image change analysis (RSICA) as a new paradigm that combines the strengths of change detection and visual question answering.<n>We propose DeltaVLM, an end-to-end architecture tailored for interactive RSICA.<n>DeltaVLM features three innovations: (1) a fine-tuned bi-temporal vision encoder to capture temporal differences; (2) a visual difference perception module with a cross-semantic relation measuring mechanism to interpret changes; and (3) an instruction-guided Q-former to effectively extract query-relevant difference information.
arXiv Detail & Related papers (2025-07-30T03:14:27Z) - Image Editing As Programs with Diffusion Models [69.05164729625052]
We introduce Image Editing As Programs (IEAP), a unified image editing framework built upon the Diffusion Transformer (DiT) architecture.<n>IEAP approaches instructional editing through a reductionist lens, decomposing complex editing instructions into sequences of atomic operations.<n>Our framework delivers superior accuracy and semantic fidelity, particularly for complex, multi-step instructions.
arXiv Detail & Related papers (2025-06-04T16:57:24Z) - Modelship Attribution: Tracing Multi-Stage Manipulations Across Generative Models [37.368187232084324]
"Modelship Attribution" aims to trace the evolution of manipulated images by identifying the generative models involved and reconstructing the sequence of edits they performed.<n>We introduce the modelship attribution transformer (MAT), a framework designed to effectively recognize and attribute the contributions of various models within complex, multi-stage manipulation.
arXiv Detail & Related papers (2025-06-03T03:45:09Z) - UniVG: A Generalist Diffusion Model for Unified Image Generation and Editing [59.590505989071175]
Text-to-Image (T2I) diffusion models have shown impressive results in generating visually compelling images following user prompts.<n>We introduce UniVG, a generalist diffusion model capable of supporting a diverse range of image generation tasks with a single set of weights.
arXiv Detail & Related papers (2025-03-16T21:11:25Z) - DILLEMA: Diffusion and Large Language Models for Multi-Modal Augmentation [0.13124513975412253]
We present a novel framework for testing vision neural networks that leverages Large Language Models and control-conditioned Diffusion Models.<n>Our approach begins by translating images into detailed textual descriptions using a captioning model.<n>These descriptions are then used to produce new test images through a text-to-image diffusion process.
arXiv Detail & Related papers (2025-02-05T16:35:42Z) - EditAR: Unified Conditional Generation with Autoregressive Models [58.093860528672735]
We propose EditAR, a single unified autoregressive framework for a variety of conditional image generation tasks.<n>The model takes both images and instructions as inputs, and predicts the edited images tokens in a vanilla next-token paradigm.<n>We evaluate its effectiveness across diverse tasks on established benchmarks, showing competitive performance to various state-of-the-art task-specific methods.
arXiv Detail & Related papers (2025-01-08T18:59:35Z) - HMGIE: Hierarchical and Multi-Grained Inconsistency Evaluation for Vision-Language Data Cleansing [54.970275599061594]
We design an adaptive evaluation framework, called Hierarchical and Multi-Grained Inconsistency Evaluation (HMGIE)<n>HMGIE can provide multi-grained evaluations covering both accuracy and completeness for various image-caption pairs.<n>To verify the efficacy and flexibility of the proposed framework, we construct MVTID, an image-caption dataset with diverse types and granularities of inconsistencies.
arXiv Detail & Related papers (2024-12-07T15:47:49Z) - Img-Diff: Contrastive Data Synthesis for Multimodal Large Language Models [49.439311430360284]
We introduce a novel data synthesis method inspired by contrastive learning and image difference captioning.<n>Our key idea involves challenging the model to discern both matching and distinct elements.<n>We leverage this generated dataset to fine-tune state-of-the-art (SOTA) MLLMs.
arXiv Detail & Related papers (2024-08-08T17:10:16Z) - OneDiff: A Generalist Model for Image Difference Captioning [5.71214984158106]
Image Difference Captioning (IDC) is crucial for accurately describing variations between closely related images.<n>OneDiff is a novel generalist approach that utilizes a robust vision-language model architecture.<n>OneDiff consistently outperforms existing state-of-the-art models in accuracy and adaptability.
arXiv Detail & Related papers (2024-07-08T06:14:37Z) - MM1: Methods, Analysis & Insights from Multimodal LLM Pre-training [103.72844619581811]
We build performant Multimodal Large Language Models (MLLMs)
In particular, we study the importance of various architecture components and data choices.
We demonstrate that for large-scale multimodal pre-training using a careful mix of image-caption, interleaved image-text, and text-only data.
arXiv Detail & Related papers (2024-03-14T17:51:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.