In-context Language Learning for Endangered Languages in Speech Recognition
- URL: http://arxiv.org/abs/2505.20445v3
- Date: Thu, 05 Jun 2025 11:49:15 GMT
- Title: In-context Language Learning for Endangered Languages in Speech Recognition
- Authors: Zhaolin Li, Jan Niehues,
- Abstract summary: We investigate whether large language models (LLMs) can learn unseen, low-resource languages through in-context learning (ICL)<n>We show ICL enables LLMs to achieve ASR performance that is comparable to or even surpasses dedicated language models trained specifically for these languages.
- Score: 15.294500162002345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With approximately 7,000 languages spoken worldwide, current large language models (LLMs) support only a small subset. Prior research indicates LLMs can learn new languages for certain tasks without supervised data. We extend this investigation to speech recognition, investigating whether LLMs can learn unseen, low-resource languages through in-context learning (ICL). With experiments on four diverse endangered languages that LLMs have not been trained on, we find that providing more relevant text samples enhances performance in both language modelling and Automatic Speech Recognition (ASR) tasks. Furthermore, we show that the probability-based approach outperforms the traditional instruction-based approach in language learning. Lastly, we show ICL enables LLMs to achieve ASR performance that is comparable to or even surpasses dedicated language models trained specifically for these languages, while preserving the original capabilities of the LLMs.
Related papers
- Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
Cross-lingual summarization ( CLS) aims to generate a summary for the source text in a different target language.<n>Currently, instruction-tuned large language models (LLMs) excel at various English tasks.<n>Recent studies have shown that LLMs' performance on CLS tasks remains unsatisfactory even with few-shot settings.
arXiv Detail & Related papers (2024-10-26T00:39:44Z) - How Do Multilingual Language Models Remember Facts? [50.13632788453612]
We show that previously identified recall mechanisms in English largely apply to multilingual contexts.<n>We localize the role of language during recall, finding that subject enrichment is language-independent.<n>In decoder-only LLMs, FVs compose these two pieces of information in two separate stages.
arXiv Detail & Related papers (2024-10-18T11:39:34Z) - MindMerger: Efficient Boosting LLM Reasoning in non-English Languages [26.334092384176518]
Reasoning capabilities are crucial for Large Language Models (LLMs)
We propose MindMerger, which merges LLMs with the external language understanding capabilities from multilingual models.
MindMerger consistently outperforms all baselines, especially in low-resource languages.
arXiv Detail & Related papers (2024-05-27T17:41:54Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
Large Language Models (LLMs) have shown impressive language capabilities.
In this work, we investigate the spontaneous multilingual alignment improvement of LLMs.
We find that LLMs instruction-tuned on the question translation data (i.e. without annotated answers) are able to encourage the alignment between English and a wide range of languages.
arXiv Detail & Related papers (2024-05-22T16:46:19Z) - Teaching a Multilingual Large Language Model to Understand Multilingual Speech via Multi-Instructional Training [29.47243668154796]
BLOOMZMMS is a novel model that integrates a multilingual LLM with a multilingual speech encoder.
We demonstrate the transferability of linguistic knowledge from the text to the speech modality.
Our zero-shot evaluation results confirm the robustness of our approach across multiple tasks.
arXiv Detail & Related papers (2024-04-16T21:45:59Z) - Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
Large language models (LLMs) demonstrate remarkable multilingual capabilities without being pre-trained on specially curated multilingual parallel corpora.
We propose a novel detection method, language activation probability entropy (LAPE), to identify language-specific neurons within LLMs.
Our findings indicate that LLMs' proficiency in processing a particular language is predominantly due to a small subset of neurons.
arXiv Detail & Related papers (2024-02-26T09:36:05Z) - Enhancing Multilingual Capabilities of Large Language Models through
Self-Distillation from Resource-Rich Languages [60.162717568496355]
Large language models (LLMs) have been pre-trained on multilingual corpora.
Their performance still lags behind in most languages compared to a few resource-rich languages.
arXiv Detail & Related papers (2024-02-19T15:07:32Z) - Establishing Vocabulary Tests as a Benchmark for Evaluating Large
Language Models [2.7013338932521416]
We advocate for the revival of vocabulary tests as a valuable tool for assessing Large Language Models (LLMs) performance.
We evaluate seven LLMs using two vocabulary test formats across two languages and uncover surprising gaps in their lexical knowledge.
arXiv Detail & Related papers (2023-10-23T08:45:12Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
Large language models (LLMs) are known to effectively perform tasks by simply observing few exemplars.
We propose to assemble synthetic exemplars from a diverse set of high-resource languages to prompt the LLMs to translate from any language into English.
Our unsupervised prompting method performs on par with supervised few-shot learning in LLMs of different sizes for translations between English and 13 Indic and 21 African low-resource languages.
arXiv Detail & Related papers (2023-06-20T08:27:47Z) - Don't Trust ChatGPT when Your Question is not in English: A Study of
Multilingual Abilities and Types of LLMs [16.770697902481107]
Large Language Models (LLMs) have demonstrated exceptional natural language understanding abilities.
We propose a systematic way of qualifying the performance disparities of LLMs under multilingual settings.
The results show that GPT exhibits highly translating-like behaviour in multilingual settings.
arXiv Detail & Related papers (2023-05-24T02:05:03Z) - A Primer on Pretrained Multilingual Language Models [18.943173499882885]
Multilingual Language Models (MLLMs) have emerged as a viable option for bringing the power of pretraining to a large number of languages.
We review the existing literature covering the above broad areas of research pertaining to MLLMs.
arXiv Detail & Related papers (2021-07-01T18:01:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.