Training Articulatory Inversion Models for Interspeaker Consistency
- URL: http://arxiv.org/abs/2505.20529v3
- Date: Mon, 09 Jun 2025 11:06:35 GMT
- Title: Training Articulatory Inversion Models for Interspeaker Consistency
- Authors: Charles McGhee, Mark J. F. Gales, Kate M. Knill,
- Abstract summary: Acoustic-to-Articulatory Inversion (AAI) attempts to model the inverse mapping from speech to articulation.<n>Recent works in AAI have proposed adapting Self-Supervised Learning (SSL) models to single-speaker datasets.<n>We investigate whether SSL-adapted models trained on single and multi-speaker data produce articulatory targets consistent across speaker identities for English and Russian.
- Score: 34.667379055539236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Acoustic-to-Articulatory Inversion (AAI) attempts to model the inverse mapping from speech to articulation. Exact articulatory prediction from speech alone may be impossible, as speakers can choose different forms of articulation seemingly without reference to their vocal tract structure. However, once a speaker has selected an articulatory form, their productions vary minimally. Recent works in AAI have proposed adapting Self-Supervised Learning (SSL) models to single-speaker datasets, claiming that these single-speaker models provide a universal articulatory template. In this paper, we investigate whether SSL-adapted models trained on single and multi-speaker data produce articulatory targets which are consistent across speaker identities for English and Russian. We do this through the use of a novel evaluation method which extracts articulatory targets using minimal pair sets. We also present a training method which can improve interspeaker consistency using only speech data.
Related papers
- Incorporating Linguistic Constraints from External Knowledge Source for Audio-Visual Target Speech Extraction [87.49303116989708]
We explore the potential of pre-trained speech-language models (PSLMs) and pre-trained language models (PLMs) as auxiliary knowledge sources for AV-TSE.<n>In this study, we propose incorporating the linguistic constraints from PSLMs or PLMs for the AV-TSE model as additional supervision signals.<n>Without any extra computational cost during inference, the proposed approach consistently improves speech quality and intelligibility.
arXiv Detail & Related papers (2025-06-11T14:36:26Z) - MSA-ASR: Efficient Multilingual Speaker Attribution with frozen ASR Models [59.80042864360884]
Speaker-attributed automatic speech recognition (SA-ASR) aims to transcribe speech while assigning transcripts to the corresponding speakers accurately.<n>This paper introduces a novel approach, leveraging a frozen multilingual ASR model to incorporate speaker attribution into the transcriptions.
arXiv Detail & Related papers (2024-11-27T09:01:08Z) - Developing Acoustic Models for Automatic Speech Recognition in Swedish [6.5458610824731664]
This paper is concerned with automatic continuous speech recognition using trainable systems.
The aim of this work is to build acoustic models for spoken Swedish.
arXiv Detail & Related papers (2024-04-25T12:03:14Z) - ELF: Encoding Speaker-Specific Latent Speech Feature for Speech Synthesis [5.824018496599849]
We propose a novel method for modeling numerous speakers.
It enables expressing the overall characteristics of speakers in detail like a trained multi-speaker model.
arXiv Detail & Related papers (2023-11-20T13:13:24Z) - Self-Supervised Models of Speech Infer Universal Articulatory Kinematics [44.27187669492598]
We show "inference of articulatory kinematics" as fundamental property of SSL models.
We also show that this abstraction is largely overlapping across the language of the data used to train the model.
We show that with simple affine transformations, Acoustic-to-Articulatory inversion (AAI) is transferrable across speakers, even across genders, languages, and dialects.
arXiv Detail & Related papers (2023-10-16T19:50:01Z) - Disentangling Voice and Content with Self-Supervision for Speaker
Recognition [57.446013973449645]
This paper proposes a disentanglement framework that simultaneously models speaker traits and content variability in speech.
It is validated with experiments conducted on the VoxCeleb and SITW datasets with 9.56% and 8.24% average reductions in EER and minDCF.
arXiv Detail & Related papers (2023-10-02T12:02:07Z) - Zero-shot text-to-speech synthesis conditioned using self-supervised
speech representation model [13.572330725278066]
A novel point of the proposed method is the direct use of the SSL model to obtain embedding vectors from speech representations trained with a large amount of data.
The disentangled embeddings will enable us to achieve better reproduction performance for unseen speakers and rhythm transfer conditioned by different speeches.
arXiv Detail & Related papers (2023-04-24T10:15:58Z) - Supervised Acoustic Embeddings And Their Transferability Across
Languages [2.28438857884398]
In speech recognition, it is essential to model the phonetic content of the input signal while discarding irrelevant factors such as speaker variations and noise.
Self-supervised pre-training has been proposed as a way to improve both supervised and unsupervised speech recognition.
arXiv Detail & Related papers (2023-01-03T09:37:24Z) - ERNIE-SAT: Speech and Text Joint Pretraining for Cross-Lingual
Multi-Speaker Text-to-Speech [58.93395189153713]
We extend the pretraining method for cross-lingual multi-speaker speech synthesis tasks.
We propose a speech-text joint pretraining framework, where we randomly mask the spectrogram and the phonemes.
Our model shows great improvements over speaker-embedding-based multi-speaker TTS methods.
arXiv Detail & Related papers (2022-11-07T13:35:16Z) - ASR data augmentation in low-resource settings using cross-lingual
multi-speaker TTS and cross-lingual voice conversion [49.617722668505834]
We show that our approach permits the application of speech synthesis and voice conversion to improve ASR systems using only one target-language speaker during model training.
It is possible to obtain promising ASR training results with our data augmentation method using only a single real speaker in a target language.
arXiv Detail & Related papers (2022-03-29T11:55:30Z) - GANSpeech: Adversarial Training for High-Fidelity Multi-Speaker Speech
Synthesis [6.632254395574993]
GANSpeech is a high-fidelity multi-speaker TTS model that adopts the adversarial training method to a non-autoregressive multi-speaker TTS model.
In the subjective listening tests, GANSpeech significantly outperformed the baseline multi-speaker FastSpeech and FastSpeech2 models.
arXiv Detail & Related papers (2021-06-29T08:15:30Z) - Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation [63.561944239071615]
StyleSpeech is a new TTS model which synthesizes high-quality speech and adapts to new speakers.
With SALN, our model effectively synthesizes speech in the style of the target speaker even from single speech audio.
We extend it to Meta-StyleSpeech by introducing two discriminators trained with style prototypes, and performing episodic training.
arXiv Detail & Related papers (2021-06-06T15:34:11Z) - Semi-supervised Learning for Multi-speaker Text-to-speech Synthesis
Using Discrete Speech Representation [125.59372403631006]
We propose a semi-supervised learning approach for multi-speaker text-to-speech (TTS)
A multi-speaker TTS model can learn from the untranscribed audio via the proposed encoder-decoder framework with discrete speech representation.
We found the model can benefit from the proposed semi-supervised learning approach even when part of the unpaired speech data is noisy.
arXiv Detail & Related papers (2020-05-16T15:47:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.