Paths Not Taken: Understanding and Mending the Multilingual Factual Recall Pipeline
- URL: http://arxiv.org/abs/2505.20546v2
- Date: Wed, 28 May 2025 02:10:37 GMT
- Title: Paths Not Taken: Understanding and Mending the Multilingual Factual Recall Pipeline
- Authors: Meng Lu, Ruochen Zhang, Carsten Eickhoff, Ellie Pavlick,
- Abstract summary: We find that multilingual large language models (LLMs) exhibit significantly better performance in factual recall tasks in English than in other languages.<n>We identify two primary sources of error: insufficient engagement of the reliable English-centric mechanism for factual recall, and incorrect translation from English back into the target language.<n>Our interventions combined increase the recall accuracy by over 35 percent for the lowest-performing language.
- Score: 36.2731426595852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multilingual large language models (LLMs) often exhibit factual inconsistencies across languages, with significantly better performance in factual recall tasks in English than in other languages. The causes of these failures, however, remain poorly understood. Using mechanistic analysis techniques, we uncover the underlying pipeline that LLMs employ, which involves using the English-centric factual recall mechanism to process multilingual queries and then translating English answers back into the target language. We identify two primary sources of error: insufficient engagement of the reliable English-centric mechanism for factual recall, and incorrect translation from English back into the target language for the final answer. To address these vulnerabilities, we introduce two vector interventions, both independent of languages and datasets, to redirect the model toward better internal paths for higher factual consistency. Our interventions combined increase the recall accuracy by over 35 percent for the lowest-performing language. Our findings demonstrate how mechanistic insights can be used to unlock latent multilingual capabilities in LLMs.
Related papers
- Learn Globally, Speak Locally: Bridging the Gaps in Multilingual Reasoning [38.52080213211765]
We introduce GeoFact-X, a geography-based multilingual factual reasoning benchmark with annotated reasoning traces in five languages.<n>We propose BRIDGE, a novel training method that guides supervised fine-tuning and test-time reinforcement learning.<n>Our results show that BRIDGE significantly enhances multilingual reasoning fidelity.
arXiv Detail & Related papers (2025-07-07T19:04:36Z) - Cross-Lingual Pitfalls: Automatic Probing Cross-Lingual Weakness of Multilingual Large Language Models [55.14276067678253]
This paper introduces a novel methodology for efficiently identifying inherent cross-lingual weaknesses in Large Language Models (LLMs)<n>We construct a new dataset of over 6,000 bilingual pairs across 16 languages using this methodology, demonstrating its effectiveness in revealing weaknesses even in state-of-the-art models.<n>Further experiments investigate the relationship between linguistic similarity and cross-lingual weaknesses, revealing that linguistically related languages share similar performance patterns.
arXiv Detail & Related papers (2025-05-24T12:31:27Z) - Lost in Multilinguality: Dissecting Cross-lingual Factual Inconsistency in Transformer Language Models [49.16690802656554]
We find that Multilingual factual models struggle to provide consistent responses to semantically equivalent prompts in different languages.<n>We propose a linear shortcut method that bypasses computations in the final layers, enhancing both prediction accuracy and cross-lingual consistency.
arXiv Detail & Related papers (2025-04-05T19:43:10Z) - How Do Multilingual Language Models Remember Facts? [50.13632788453612]
We show that previously identified recall mechanisms in English largely apply to multilingual contexts.<n>We localize the role of language during recall, finding that subject enrichment is language-independent.<n>In decoder-only LLMs, FVs compose these two pieces of information in two separate stages.
arXiv Detail & Related papers (2024-10-18T11:39:34Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.<n>But can these models relate corresponding concepts across languages, i.e., be crosslingual?<n>This study evaluates state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - Eliciting Better Multilingual Structured Reasoning from LLMs through Code [17.870002864331322]
We introduce a multilingual structured reasoning and explanation dataset, termed xSTREET, that covers four tasks across six languages.
xSTREET exposes a gap in base LLM performance between English and non-English reasoning tasks.
We propose two methods to remedy this gap, building on the insight that LLMs trained on code are better reasoners.
arXiv Detail & Related papers (2024-03-05T00:48:56Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
We investigate how large language models (LLMs) function as rerankers in cross-lingual information retrieval systems for African languages.
Our implementation covers English and four African languages (Hausa, Somali, Swahili, and Yoruba)
We examine cross-lingual reranking with queries in English and passages in the African languages.
arXiv Detail & Related papers (2023-12-26T18:38:54Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
Cross-lingual Machine Reading (CLMRC) remains a challenging problem due to the lack of large-scale datasets in low-source languages.
We propose a novel augmentation approach named Language Branch Machine Reading (LBMRC)
LBMRC trains multiple machine reading comprehension (MRC) models proficient in individual language.
We devise a multilingual distillation approach to amalgamate knowledge from multiple language branch models to a single model for all target languages.
arXiv Detail & Related papers (2020-10-27T13:12:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.