How Do Multilingual Language Models Remember Facts?
- URL: http://arxiv.org/abs/2410.14387v2
- Date: Sat, 15 Feb 2025 18:22:49 GMT
- Title: How Do Multilingual Language Models Remember Facts?
- Authors: Constanza Fierro, Negar Foroutan, Desmond Elliott, Anders Søgaard,
- Abstract summary: We show that previously identified recall mechanisms in English largely apply to multilingual contexts.<n>We localize the role of language during recall, finding that subject enrichment is language-independent.<n>In decoder-only LLMs, FVs compose these two pieces of information in two separate stages.
- Score: 50.13632788453612
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) store and retrieve vast amounts of factual knowledge acquired during pre-training. Prior research has localized and identified mechanisms behind knowledge recall; however, it has only focused on English monolingual models. The question of how these mechanisms generalize to non-English languages and multilingual LLMs remains unexplored. In this paper, we address this gap by conducting a comprehensive analysis of three multilingual LLMs. First, we show that previously identified recall mechanisms in English largely apply to multilingual contexts, with nuances based on language and architecture. Next, through patching intermediate representations, we localize the role of language during recall, finding that subject enrichment is language-independent, while object extraction is language-dependent. Additionally, we discover that the last token representation acts as a Function Vector (FV), encoding both the language of the query and the content to be extracted from the subject. Furthermore, in decoder-only LLMs, FVs compose these two pieces of information in two separate stages. These insights reveal unique mechanisms in multilingual LLMs for recalling information, highlighting the need for new methodologies--such as knowledge evaluation, fact editing, and knowledge acquisition--that are specifically tailored for multilingual LLMs.
Related papers
- High-Dimensional Interlingual Representations of Large Language Models [65.77317753001954]
Large language models (LLMs) trained on massive multilingual datasets hint at the formation of interlingual constructs.
We explore 31 diverse languages varying on their resource-levels, typologies, and geographical regions.
We find that multilingual LLMs exhibit inconsistent cross-lingual alignments.
arXiv Detail & Related papers (2025-03-14T10:39:27Z) - Probing LLMs for Multilingual Discourse Generalization Through a Unified Label Set [28.592959007943538]
This work investigates whether large language models (LLMs) capture discourse knowledge that generalizes across languages and frameworks.
Using multilingual discourse relation classification as a testbed, we examine a comprehensive set of 23 LLMs of varying sizes and multilingual capabilities.
Our results show that LLMs, especially those with multilingual training corpora, can generalize discourse information across languages and frameworks.
arXiv Detail & Related papers (2025-03-13T16:20:25Z) - How does a Multilingual LM Handle Multiple Languages? [0.0]
This study critically examines capabilities in multilingual understanding, semantic representation, and cross-lingual knowledge transfer.
It assesses semantic similarity by analyzing multilingual word embeddings for consistency using cosine similarity.
It examines BLOOM-1.7B and Qwen2 through Named Entity Recognition and sentence similarity tasks to understand their linguistic structures.
arXiv Detail & Related papers (2025-02-06T18:08:14Z) - Converging to a Lingua Franca: Evolution of Linguistic Regions and Semantics Alignment in Multilingual Large Language Models [11.423589362950812]
Large language models (LLMs) have demonstrated remarkable performance, particularly in multilingual contexts.
Recent studies suggest that LLMs can transfer skills learned in one language to others, but the internal mechanisms behind this ability remain unclear.
This paper provides insights into the internal workings of LLMs, offering a foundation for future improvements in their cross-lingual capabilities.
arXiv Detail & Related papers (2024-10-15T15:49:15Z) - Multilingual Needle in a Haystack: Investigating Long-Context Behavior of Multilingual Large Language Models [22.859955360764275]
We introduce the MultiLingual Needle-in-a-Haystack (MLNeedle) test to assess a model's ability to retrieve relevant information.
We evaluate four state-of-the-art large language models on MLNeedle.
arXiv Detail & Related papers (2024-08-19T17:02:06Z) - Faux Polyglot: A Study on Information Disparity in Multilingual Large Language Models [7.615938028813914]
We studied linguistic preference in a cross-language RAG-based information search setting.
We found that LLMs displayed systemic bias towards information in the same language as the query language.
arXiv Detail & Related papers (2024-07-07T21:26:36Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
Large language models (LLMs) are typically multilingual due to pretraining on diverse multilingual corpora.
But can these models relate corresponding concepts across languages, effectively being crosslingual?
This study evaluates six state-of-the-art LLMs on inherently crosslingual tasks.
arXiv Detail & Related papers (2024-06-23T15:15:17Z) - 1+1>2: Can Large Language Models Serve as Cross-Lingual Knowledge Aggregators? [46.43162333819418]
Large Language Models (LLMs) have garnered significant attention due to their remarkable ability to process information across various languages.
Despite their capabilities, they exhibit inconsistencies in handling identical queries in different languages, presenting challenges for further advancement.
This paper introduces a method to enhance the multilingual performance of LLMs by aggregating knowledge from diverse languages.
arXiv Detail & Related papers (2024-06-20T20:32:53Z) - A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers [51.8203871494146]
The rapid development of Large Language Models (LLMs) demonstrates remarkable multilingual capabilities in natural language processing.
Despite the breakthroughs of LLMs, the investigation into the multilingual scenario remains insufficient.
This survey aims to help the research community address multilingual problems and provide a comprehensive understanding of the core concepts, key techniques, and latest developments in multilingual natural language processing based on LLMs.
arXiv Detail & Related papers (2024-05-17T17:47:39Z) - MLaKE: Multilingual Knowledge Editing Benchmark for Large Language Models [65.10456412127405]
MLaKE is a benchmark for the adaptability of knowledge editing methods across five languages.
MLaKE aggregates fact chains from Wikipedia across languages and generates questions in both free-form and multiple-choice.
We evaluate the multilingual knowledge editing generalization capabilities of existing methods on MLaKE.
arXiv Detail & Related papers (2024-04-07T15:23:28Z) - A Survey on Multilingual Large Language Models: Corpora, Alignment, and Bias [5.104497013562654]
We present an overview of MLLMs, covering their evolution, key techniques, and multilingual capacities.
We explore widely utilized multilingual corpora for MLLMs' training and multilingual datasets oriented for downstream tasks.
We discuss bias on MLLMs including its category and evaluation metrics, and summarize the existing debiasing techniques.
arXiv Detail & Related papers (2024-04-01T05:13:56Z) - Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
Large language models (LLMs) demonstrate remarkable multilingual capabilities without being pre-trained on specially curated multilingual parallel corpora.
We propose a novel detection method, language activation probability entropy (LAPE), to identify language-specific neurons within LLMs.
Our findings indicate that LLMs' proficiency in processing a particular language is predominantly due to a small subset of neurons.
arXiv Detail & Related papers (2024-02-26T09:36:05Z) - Language Representation Projection: Can We Transfer Factual Knowledge
across Languages in Multilingual Language Models? [48.88328580373103]
We propose two parameter-free $textbfL$anguage $textbfR$epresentation $textbfP$rojection modules (LRP2)
The first module converts non-English representations into English-like equivalents, while the second module reverts English-like representations back into representations of the corresponding non-English language.
Experimental results on the mLAMA dataset demonstrate that LRP2 significantly improves factual knowledge retrieval accuracy and facilitates knowledge transferability across diverse non-English languages.
arXiv Detail & Related papers (2023-11-07T08:16:16Z) - Adapters for Enhanced Modeling of Multilingual Knowledge and Text [54.02078328453149]
Language models have been extended to multilingual language models (MLLMs)
Knowledge graphs contain facts in an explicit triple format, which require careful curation and are only available in a few high-resource languages.
We propose to enhance MLLMs with knowledge from multilingual knowledge graphs (MLKGs) so as to tackle language and knowledge graph tasks across many languages.
arXiv Detail & Related papers (2022-10-24T21:33:42Z) - Analyzing the Mono- and Cross-Lingual Pretraining Dynamics of
Multilingual Language Models [73.11488464916668]
This study investigates the dynamics of the multilingual pretraining process.
We probe checkpoints taken from throughout XLM-R pretraining, using a suite of linguistic tasks.
Our analysis shows that the model achieves high in-language performance early on, with lower-level linguistic skills acquired before more complex ones.
arXiv Detail & Related papers (2022-05-24T03:35:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.