Effectiveness of Prompt Optimization in NL2SQL Systems
- URL: http://arxiv.org/abs/2505.20591v1
- Date: Mon, 26 May 2025 23:54:36 GMT
- Title: Effectiveness of Prompt Optimization in NL2SQL Systems
- Authors: Sairam Gurajada, Eser Kandogan, Sajjadur Rahman,
- Abstract summary: We argue that production scenarios demand high-precision, high-performance NL2 systems.<n>In such scenarios, the careful selection of a static set of exemplars-capturing the intricacies of the query log, target database, and execution latencies-plays a more crucial role than exemplar selection based solely on similarity.
- Score: 11.173297717087713
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: NL2SQL approaches have greatly benefited from the impressive capabilities of large language models (LLMs). In particular, bootstrapping an NL2SQL system for a specific domain can be as simple as instructing an LLM with sufficient contextual information, such as schema details and translation demonstrations. However, building an accurate system still requires the rigorous task of selecting the right context for each query-including identifying relevant schema elements, cell values, and suitable exemplars that help the LLM understand domain-specific nuances. Retrieval-based methods have become the go-to approach for identifying such context. While effective, these methods introduce additional inference-time costs due to the retrieval process. In this paper, we argue that production scenarios demand high-precision, high-performance NL2SQL systems, rather than simply high-quality SQL generation, which is the focus of most current NL2SQL approaches. In such scenarios, the careful selection of a static set of exemplars-capturing the intricacies of the query log, target database, SQL constructs, and execution latencies-plays a more crucial role than exemplar selection based solely on similarity. The key challenge, however, lies in identifying a representative set of exemplars for a given production setting. To this end, we propose a prompt optimization framework that not only addresses the high-precision requirement but also optimizes the performance of the generated SQL through multi-objective optimization. Preliminary empirical analysis demonstrates the effectiveness of the proposed framework.
Related papers
- Large Language Models are Demonstration Pre-Selectors for Themselves [57.101804269100185]
In-context learning (ICL) with large language models (LLMs) delivers strong few-shot performance by choosing few-shot demonstrations from the entire training data.<n>FEw yet Essential Demonstration prE-selectoR is a novel pre-selection framework that identifies a representative subset of demonstrations.<n>FEw yet Essential Demonstration prE-selectoR can reduce training data size by over 20% while maintaining performance.
arXiv Detail & Related papers (2025-06-06T12:29:03Z) - SchemaGraphSQL: Efficient Schema Linking with Pathfinding Graph Algorithms for Text-to-SQL on Large-Scale Databases [1.6544167074080365]
We present a zero-shot, training-free schema linking approach that first constructs a schema graph based on foreign key relations.<n>We apply classical path-finding algorithms and post-processing to identify the optimal sequence of tables and columns that should be joined.<n>Our method achieves state-of-the-art results on the BIRD benchmark, outperforming previous specialized, fine-tuned, and complex multi-step LLM-based approaches.
arXiv Detail & Related papers (2025-05-23T20:42:36Z) - Boosting Private Domain Understanding of Efficient MLLMs: A Tuning-free, Adaptive, Universal Prompt Optimization Framework [60.26747209785186]
multimodal large language models (EMLLMs) reduce model size and computational costs and are often deployed on resource-constrained devices.<n>Existing open-sourceLMs rarely have access to private domain-specific data during the pre-training process.<n>We propose a tuntextbfunderlineIng-free, atextbfunderlineDaptivtextbfunderlineE, universtextbfunderlineAL textbfunderlinePrompt Optimization Framework.
arXiv Detail & Related papers (2024-12-27T15:21:17Z) - CHASE-SQL: Multi-Path Reasoning and Preference Optimized Candidate Selection in Text-to-SQL [9.47170756607886]
CHASE- is a new framework that employs innovative strategies, using test-time compute in multi-agent modeling to improve candidate generation and selection.
To identify the best candidate, a selection agent is employed to rank the candidates through pairwise comparisons with a fine-tuned binary-candidates selection LLM.
Overall, our proposed CHASE- achieves the state-of-the-art execution accuracy of 73.0% and 73.01% on the test set and development set of the notable BIRD Text-to- dataset benchmark.
arXiv Detail & Related papers (2024-10-02T18:41:35Z) - QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
We introduce Query-dependent Prompt Optimization (QPO), which iteratively fine-tune a small pretrained language model to generate optimal prompts tailored to the input queries.
We derive insights from offline prompting demonstration data, which already exists in large quantities as a by-product of benchmarking diverse prompts on open-sourced tasks.
Experiments on various LLM scales and diverse NLP and math tasks demonstrate the efficacy and cost-efficiency of our method in both zero-shot and few-shot scenarios.
arXiv Detail & Related papers (2024-08-20T03:06:48Z) - DeTriever: Decoder-representation-based Retriever for Improving NL2SQL In-Context Learning [19.93800175353809]
DeTriever is a novel demonstration retrieval framework that learns a weighted combination of hidden states.
Our method significantly outperforms the state-of-the-art baselines on one-shot NL2 tasks.
arXiv Detail & Related papers (2024-06-12T06:33:54Z) - Prompt Optimization with EASE? Efficient Ordering-aware Automated Selection of Exemplars [66.823588073584]
Large language models (LLMs) have shown impressive capabilities in real-world applications.
The quality of these exemplars in the prompt greatly impacts performance.
Existing methods fail to adequately account for the impact of exemplar ordering on the performance.
arXiv Detail & Related papers (2024-05-25T08:23:05Z) - MCS-SQL: Leveraging Multiple Prompts and Multiple-Choice Selection For Text-to-SQL Generation [10.726734105960924]
Large language models (LLMs) have enabled in-context learning (ICL)-based methods that significantly outperform fine-tuning approaches for text-to- tasks.
This study considers the sensitivity of LLMs to the prompts and introduces a novel approach that leverages multiple prompts to explore a broader search space for possible answers.
We establish a new SOTA performance on the BIRD in terms of both the accuracy and efficiency of the generated queries.
arXiv Detail & Related papers (2024-05-13T04:59:32Z) - Text-to-SQL Empowered by Large Language Models: A Benchmark Evaluation [76.76046657162306]
Large language models (LLMs) have emerged as a new paradigm for Text-to- task.
Large language models (LLMs) have emerged as a new paradigm for Text-to- task.
arXiv Detail & Related papers (2023-08-29T14:59:54Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.