Position: Adopt Constraints Over Penalties in Deep Learning
- URL: http://arxiv.org/abs/2505.20628v3
- Date: Mon, 28 Jul 2025 19:38:14 GMT
- Title: Position: Adopt Constraints Over Penalties in Deep Learning
- Authors: Juan Ramirez, Meraj Hashemizadeh, Simon Lacoste-Julien,
- Abstract summary: We argue this approach is fundamentally ill-suited since there may be no penalty coefficient.<n> tuning these coefficients requires costly trial-and-error, incurring significant time and computational overhead.<n>We advocate for broader adoption of tailored constrained optimization methods.
- Score: 18.228634659355958
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent efforts to develop trustworthy AI systems with accountability guarantees have led to widespread use of machine learning formulations incorporating external requirements, or constraints. These requirements are often enforced via penalization--adding fixed-weight terms to the task loss. We argue this approach is fundamentally ill-suited since there may be no penalty coefficient that simultaneously ensures constraint satisfaction and optimal constrained performance, i.e., that truly solves the constrained problem. Moreover, tuning these coefficients requires costly trial-and-error, incurring significant time and computational overhead. We, therefore, advocate for broader adoption of tailored constrained optimization methods--such as the Lagrangian approach, which jointly optimizes the penalization "coefficients" (the Lagrange multipliers) and the model parameters. Such methods (i) truly solve the constrained problem and do so accountably, by clearly defining feasibility and verifying when it is achieved, (ii) eliminate the need for extensive penalty tuning, and (iii) integrate seamlessly with modern deep learning pipelines.
Related papers
- Single-loop Algorithms for Stochastic Non-convex Optimization with Weakly-Convex Constraints [49.76332265680669]
This paper examines a crucial subset of problems where both the objective and constraint functions are weakly convex.<n>Existing methods often face limitations, including slow convergence rates or reliance on double-loop designs.<n>We introduce a novel single-loop penalty-based algorithm to overcome these challenges.
arXiv Detail & Related papers (2025-04-21T17:15:48Z) - Implementing Slack-Free Custom Penalty Function for QUBO on Gate-Based Quantum Computers [4.266376725904727]
Variational Quantum Algorithms (VQAs) typically require constrained problems to be reformulated as unconstrained ones using penalty methods.<n>A common approach introduces slack variables and quadratic penalties in the QUBO formulation to handle inequality constraints.<n>We explore a slack-free formulation that directly encodes inequality constraints using custom penalty functions.<n>These step-like penalties suppress infeasible solutions without introducing additional qubits or requiring finely tuned weights.
arXiv Detail & Related papers (2025-04-17T03:20:02Z) - Exterior Penalty Policy Optimization with Penalty Metric Network under Constraints [52.37099916582462]
In Constrained Reinforcement Learning (CRL), agents explore the environment to learn the optimal policy while satisfying constraints.
We propose a theoretically guaranteed penalty function method, Exterior Penalty Policy Optimization (EPO), with adaptive penalties generated by a Penalty Metric Network (PMN)
PMN responds appropriately to varying degrees of constraint violations, enabling efficient constraint satisfaction and safe exploration.
arXiv Detail & Related papers (2024-07-22T10:57:32Z) - A Penalty-Based Guardrail Algorithm for Non-Decreasing Optimization with Inequality Constraints [1.5498250598583487]
Traditional mathematical programming solvers require long computational times to solve constrained minimization problems.
We propose a penalty-based guardrail algorithm (PGA) to efficiently solve them.
arXiv Detail & Related papers (2024-05-03T10:37:34Z) - Resilient Constrained Reinforcement Learning [87.4374430686956]
We study a class of constrained reinforcement learning (RL) problems in which multiple constraint specifications are not identified before study.
It is challenging to identify appropriate constraint specifications due to the undefined trade-off between the reward training objective and the constraint satisfaction.
We propose a new constrained RL approach that searches for policy and constraint specifications together.
arXiv Detail & Related papers (2023-12-28T18:28:23Z) - Primal-Dual Contextual Bayesian Optimization for Control System Online
Optimization with Time-Average Constraints [21.38692458445459]
This paper studies the problem of online performance optimization of constrained closed-loop control systems.
A primal-dual contextual Bayesian optimization algorithm is proposed that achieves sublinear cumulative regret with respect to the dynamic optimal solution.
arXiv Detail & Related papers (2023-04-12T18:37:52Z) - Algorithm for Constrained Markov Decision Process with Linear
Convergence [55.41644538483948]
An agent aims to maximize the expected accumulated discounted reward subject to multiple constraints on its costs.
A new dual approach is proposed with the integration of two ingredients: entropy regularized policy and Vaidya's dual.
The proposed approach is shown to converge (with linear rate) to the global optimum.
arXiv Detail & Related papers (2022-06-03T16:26:38Z) - Penalized Proximal Policy Optimization for Safe Reinforcement Learning [68.86485583981866]
We propose Penalized Proximal Policy Optimization (P3O), which solves the cumbersome constrained policy iteration via a single minimization of an equivalent unconstrained problem.
P3O utilizes a simple-yet-effective penalty function to eliminate cost constraints and removes the trust-region constraint by the clipped surrogate objective.
We show that P3O outperforms state-of-the-art algorithms with respect to both reward improvement and constraint satisfaction on a set of constrained locomotive tasks.
arXiv Detail & Related papers (2022-05-24T06:15:51Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Constrained Reinforcement Learning for Dynamic Optimization under
Uncertainty [1.5797349391370117]
Dynamic real-time optimization (DRTO) is a challenging task due to the fact that optimal operating conditions must be computed in real time.
The main bottleneck in the industrial application of DRTO is the presence of uncertainty.
We present a constrained reinforcement learning (RL) based approach to accommodate these difficulties.
arXiv Detail & Related papers (2020-06-04T10:17:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.