Constrained Reinforcement Learning for Dynamic Optimization under
Uncertainty
- URL: http://arxiv.org/abs/2006.02750v1
- Date: Thu, 4 Jun 2020 10:17:35 GMT
- Title: Constrained Reinforcement Learning for Dynamic Optimization under
Uncertainty
- Authors: Panagiotis Petsagkourakis, Ilya Orson Sandoval, Eric Bradford, Dongda
Zhang, Ehecatl Antonio del R\'io Chanona
- Abstract summary: Dynamic real-time optimization (DRTO) is a challenging task due to the fact that optimal operating conditions must be computed in real time.
The main bottleneck in the industrial application of DRTO is the presence of uncertainty.
We present a constrained reinforcement learning (RL) based approach to accommodate these difficulties.
- Score: 1.5797349391370117
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic real-time optimization (DRTO) is a challenging task due to the fact
that optimal operating conditions must be computed in real time. The main
bottleneck in the industrial application of DRTO is the presence of
uncertainty. Many stochastic systems present the following obstacles: 1)
plant-model mismatch, 2) process disturbances, 3) risks in violation of process
constraints. To accommodate these difficulties, we present a constrained
reinforcement learning (RL) based approach. RL naturally handles the process
uncertainty by computing an optimal feedback policy. However, no state
constraints can be introduced intuitively. To address this problem, we present
a chance-constrained RL methodology. We use chance constraints to guarantee the
probabilistic satisfaction of process constraints, which is accomplished by
introducing backoffs, such that the optimal policy and backoffs are computed
simultaneously. Backoffs are adjusted using the empirical cumulative
distribution function to guarantee the satisfaction of a joint chance
constraint. The advantage and performance of this strategy are illustrated
through a stochastic dynamic bioprocess optimization problem, to produce
sustainable high-value bioproducts.
Related papers
- Resilient Constrained Reinforcement Learning [87.4374430686956]
We study a class of constrained reinforcement learning (RL) problems in which multiple constraint specifications are not identified before study.
It is challenging to identify appropriate constraint specifications due to the undefined trade-off between the reward training objective and the constraint satisfaction.
We propose a new constrained RL approach that searches for policy and constraint specifications together.
arXiv Detail & Related papers (2023-12-28T18:28:23Z) - Online Constraint Tightening in Stochastic Model Predictive Control: A
Regression Approach [49.056933332667114]
No analytical solutions exist for chance-constrained optimal control problems.
We propose a data-driven approach for learning the constraint-tightening parameters online during control.
Our approach yields constraint-tightening parameters that tightly satisfy the chance constraints.
arXiv Detail & Related papers (2023-10-04T16:22:02Z) - Resilient Constrained Learning [94.27081585149836]
This paper presents a constrained learning approach that adapts the requirements while simultaneously solving the learning task.
We call this approach resilient constrained learning after the term used to describe ecological systems that adapt to disruptions by modifying their operation.
arXiv Detail & Related papers (2023-06-04T18:14:18Z) - Distributional Reinforcement Learning for Scheduling of (Bio)chemical
Production Processes [0.0]
Reinforcement Learning (RL) has recently received significant attention from the process systems engineering and control communities.
We present a RL methodology to address precedence and disjunctive constraints as commonly imposed on production scheduling problems.
arXiv Detail & Related papers (2022-03-01T17:25:40Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Constrained Model-Free Reinforcement Learning for Process Optimization [0.0]
Reinforcement learning (RL) is a control approach that can handle nonlinear optimal control problems.
Despite the promise exhibited, RL has yet to see marked translation to industrial practice.
We propose an 'oracle'-assisted constrained Q-learning algorithm that guarantees the satisfaction of joint chance constraints with a high probability.
arXiv Detail & Related papers (2020-11-16T13:16:22Z) - Constrained Markov Decision Processes via Backward Value Functions [43.649330976089004]
We model the problem of learning with constraints as a Constrained Markov Decision Process.
A key contribution of our approach is to translate cumulative cost constraints into state-based constraints.
We provide theoretical guarantees under which the agent converges while ensuring safety over the course of training.
arXiv Detail & Related papers (2020-08-26T20:56:16Z) - Chance Constrained Policy Optimization for Process Control and
Optimization [1.4908563154226955]
Chemical process optimization and control are affected by 1) plant-model mismatch, 2) process disturbances, and 3) constraints for safe operation.
We propose a chance constrained policy optimization algorithm which guarantees the satisfaction of joint chance constraints with a high probability.
arXiv Detail & Related papers (2020-07-30T14:20:35Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z) - Guided Constrained Policy Optimization for Dynamic Quadrupedal Robot
Locomotion [78.46388769788405]
We introduce guided constrained policy optimization (GCPO), an RL framework based upon our implementation of constrained policy optimization (CPPO)
We show that guided constrained RL offers faster convergence close to the desired optimum resulting in an optimal, yet physically feasible, robotic control behavior without the need for precise reward function tuning.
arXiv Detail & Related papers (2020-02-22T10:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.