Critical Spectrum and Quantum Criticality in the Two-Photon Rabi-Stark Model
- URL: http://arxiv.org/abs/2505.20703v2
- Date: Mon, 14 Jul 2025 13:15:06 GMT
- Title: Critical Spectrum and Quantum Criticality in the Two-Photon Rabi-Stark Model
- Authors: Jiong Li, Qing-Hu Chen,
- Abstract summary: We investigate the spectral properties and quantum criticality of the two-photon Rabi-Stark model.<n>The corresponding gap differs from those in both the one-photon Rabi-Stark model and the quantum Rabi model, suggesting a distinct universality class.<n>Our results offer new insights into novel spectral phenomena in nonlinear quantum Rabi models, with potential implications for experimental realizations in circuit QED and trapped ion systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the spectral properties and quantum criticality of the two-photon Rabi-Stark model. Using the exact solution of this model, we rigorously derive a condition for complete spectral collapse, where all bound states vanish. In this case, the energy gap closes at a critical coupling, signaling a continuous quantum phase transition. The corresponding gap exponent differs from those in both the one-photon Rabi-Stark model and the quantum Rabi model, suggesting a distinct universality class. While in the general case, an infinite number of discrete bound states exist when spectral collapse occur and the energy gap remains open. By mapping to an inverse square potential well, these bound levels approach the threshold energy exponentially. Our results offer new insights into novel spectral phenomena in nonlinear quantum Rabi models, with potential implications for experimental realizations in circuit QED and trapped ion systems.
Related papers
- Multi-Photon Quantum Rabi Models with Center-of-Mass Motion [45.73541813564926]
We introduce a rigorous, second-quantized framework for describing multi-$Lambda$-atoms in a cavity.<n>A key feature of our approach is the systematic application of a Hamiltonian averaging theory to the atomic field operators.<n>A significant finding is the emergence of a particle-particle interaction mediated by ancillary states.
arXiv Detail & Related papers (2025-07-07T09:50:48Z) - Universal quantum melting of quasiperiodic attractors in driven-dissipative cavities [0.0]
We develop a quantum description of limit tori within the Lindblad master-equation formalism.<n>We analyze the system across the quantum-to-classical transition.<n>Our results establish the quantum melting of limit tori as a distinct non-equilibrium critical phenomenon.
arXiv Detail & Related papers (2025-07-04T18:26:04Z) - Nuclear responses with neural-network quantum states [37.902436796793616]
We introduce a variational Monte Carlo framework that combines neural-network quantum states with the Lorentz integral transform technique.<n>We focus on the photoabsorption cross section of light nuclei, where benchmarks against numerically exact techniques are available.
arXiv Detail & Related papers (2025-04-28T18:57:21Z) - Critical spectrum of the anisotropic two-photon quantum Rabi model [0.0]
The doubly degenerate exceptional states are identified through analytical methods.<n>We rigorously find that a finite number of bound states exist between two anisotropy dependent critical atomic frequencies.
arXiv Detail & Related papers (2024-12-29T11:21:40Z) - Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.<n>We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.<n>Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Spectral continuum in the Rabi-Stark model [0.0]
We show that the spectrum extends continuously from a threshold value up to infinity.
A set of normalizable states are embedded in the continuum which furnishes an unexpected analogy to the atomic Stark effect.
arXiv Detail & Related papers (2024-03-25T13:37:19Z) - Emergent equilibrium and quantum criticality in a two-photon dissipative oscillator [0.0]
We study the dissipative phase transition in a quantum oscillator with two-photon drive and two-photon dissipation.
We construct a theory of non-perturbative quantum fluctuations and go beyond the semi-classical approximation.
We provide a description of the quantum critical region and obtain critical exponents that appear to be in very good agreement with numerical simulations.
arXiv Detail & Related papers (2023-11-01T05:03:44Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Deterministic generation of multi-photon bundles in a quantum Rabi model [7.475750944627122]
We propose a scheme that generates multi-photon bundles via virtual excitations in a quantum Rabi model.
We show that the driving pulses induce deterministic emission of multiple photons from the eigenstates of the quantum Rabi model.
We calculate the generalized second-order correlation functions of the output photons, which reveal that the emitted photons form antibunched multi-photon bundles.
arXiv Detail & Related papers (2022-10-07T15:21:33Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Floquet analysis of extended Rabi models based on high-frequency
expansion [4.825076503537852]
We transform two kinds of extended quantum Rabi model, anisotropic Rabi model and asymmetric Rabi model, into rotating frame.
For anisotropic Rabi model, the quasi energy fits well with the numerical results even when the rotating-wave coupling is in the deep-strong coupling regime.
For asymmetric Rabi model, the external bias field which breaks the parity symmetry of total excitation number tends to cluster the upper and lower branches into two bundles.
arXiv Detail & Related papers (2022-02-20T07:34:21Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Critical Theory for the Breakdown of Photon Blockade [0.0]
Photon blockade is the result of the interplay between the quantized nature of light and strong optical nonlinearities.
We theoretically study a single atom coupled to the light field.
We show that this transition is associated to the spontaneous breaking of an anti-unitary PT-symmetry.
arXiv Detail & Related papers (2020-06-10T01:09:21Z) - Resilience of the superradiant phase against $\mathbf {A^2}$ effects in
the quantum Rabi dimer [0.0]
We study the quantum criticality of a two-site model combining quantum Rabi models with hopping interaction.
We find that the model allows the appearance of a superradiant quantum phase transition (QPT) even in the presence of strong $mathbfA2$ terms.
Our work provides a way to the study of phase transitions in presence of the $mathbfA2$ terms and offers the prospect of investigating quantum-criticality physics and quantum devices in many-body systems.
arXiv Detail & Related papers (2020-03-03T04:14:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.