SPA-RL: Reinforcing LLM Agents via Stepwise Progress Attribution
- URL: http://arxiv.org/abs/2505.20732v1
- Date: Tue, 27 May 2025 05:21:04 GMT
- Title: SPA-RL: Reinforcing LLM Agents via Stepwise Progress Attribution
- Authors: Hanlin Wang, Chak Tou Leong, Jiashuo Wang, Jian Wang, Wenjie Li,
- Abstract summary: Reinforcement learning holds promise for training agents to handle complex, goal-oriented tasks.<n> Feedback signals are typically available only after the entire task is completed.<n>We propose Stepwise Progress Attribution, which decomposes the final reward into stepwise contributions.
- Score: 9.181156720071547
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Reinforcement learning (RL) holds significant promise for training LLM agents to handle complex, goal-oriented tasks that require multi-step interactions with external environments. However, a critical challenge when applying RL to these agentic tasks arises from delayed rewards: feedback signals are typically available only after the entire task is completed. This makes it non-trivial to assign delayed rewards to earlier actions, providing insufficient guidance regarding environmental constraints and hindering agent training. In this work, we draw on the insight that the ultimate completion of a task emerges from the cumulative progress an agent makes across individual steps. We propose Stepwise Progress Attribution (SPA), a general reward redistribution framework that decomposes the final reward into stepwise contributions, each reflecting its incremental progress toward overall task completion. To achieve this, we train a progress estimator that accumulates stepwise contributions over a trajectory to match the task completion. During policy optimization, we combine the estimated per-step contribution with a grounding signal for actions executed in the environment as the fine-grained, intermediate reward for effective agent training. Extensive experiments on common agent benchmarks (including Webshop, ALFWorld, and VirtualHome) demonstrate that SPA consistently outperforms the state-of-the-art method in both success rate (+2.5\% on average) and grounding accuracy (+1.9\% on average). Further analyses demonstrate that our method remarkably provides more effective intermediate rewards for RL training. Our code is available at https://github.com/WangHanLinHenry/SPA-RL-Agent.
Related papers
- RLVMR: Reinforcement Learning with Verifiable Meta-Reasoning Rewards for Robust Long-Horizon Agents [43.806220882212386]
RLVMR integrates dense, process-level supervision into end-to-end RL by rewarding verifiable, meta-reasoning behaviors.<n>On the challenging ALFWorld and ScienceWorld benchmarks, RLVMR achieves new state-of-the-art results.
arXiv Detail & Related papers (2025-07-30T17:00:48Z) - Omni-Thinker: Scaling Cross-Domain Generalization in LLMs via Multi-Task RL with Hybrid Rewards [50.21528417884747]
We introduce Omni-Thinker, a unified reinforcement learning framework that enhances large language models (LLMs) performance across diverse tasks.<n>Our approach enables consistent optimization across task types and scales RL-based training to subjective domains.<n> Experimental results across four domains reveal that curriculum learning improves performance by 5.2% over joint training and 9.1% over model merging.
arXiv Detail & Related papers (2025-07-20T01:50:16Z) - TreeRPO: Tree Relative Policy Optimization [55.97385410074841]
name is a novel method that estimates the mathematical expectations of rewards at various reasoning steps using tree sampling.<n>Building on the group-relative reward training mechanism of GRPO, name innovatively computes rewards based on step-level groups generated during tree sampling.
arXiv Detail & Related papers (2025-06-05T15:56:38Z) - RRO: LLM Agent Optimization Through Rising Reward Trajectories [52.579992804584464]
Large language models (LLMs) have exhibited extraordinary performance in a variety of tasks.<n>In practice, agents sensitive to the outcome of certain key steps which makes them likely to fail the task.<n>We propose Reward Rising Optimization (RRO) to mitigate this issue.
arXiv Detail & Related papers (2025-05-27T05:27:54Z) - RAGEN: Understanding Self-Evolution in LLM Agents via Multi-Turn Reinforcement Learning [125.96848846966087]
Training large language models (LLMs) as interactive agents presents unique challenges.<n>While reinforcement learning has enabled progress in static tasks, multi-turn agent RL training remains underexplored.<n>We propose StarPO, a general framework for trajectory-level agent RL, and introduce RAGEN, a modular system for training and evaluating LLM agents.
arXiv Detail & Related papers (2025-04-24T17:57:08Z) - Adaptive Reward Design for Reinforcement Learning [2.3031174164121127]
We propose a suite of reward functions that incentivize an RL agent to complete a task specified by a formula as much as possible.<n>We develop an adaptive reward shaping approach that dynamically updates reward functions during the learning process.
arXiv Detail & Related papers (2024-12-14T18:04:18Z) - Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement [50.481380478458945]
Iterative step-level Process Refinement (IPR) framework provides detailed step-by-step guidance to enhance agent training.
Our experiments on three complex agent tasks demonstrate that our framework outperforms a variety of strong baselines.
arXiv Detail & Related papers (2024-06-17T03:29:13Z) - Trial and Error: Exploration-Based Trajectory Optimization for LLM Agents [49.85633804913796]
We present an exploration-based trajectory optimization approach, referred to as ETO.
This learning method is designed to enhance the performance of open LLM agents.
Our experiments on three complex tasks demonstrate that ETO consistently surpasses baseline performance by a large margin.
arXiv Detail & Related papers (2024-03-04T21:50:29Z) - Reinforcement Learning from Bagged Reward [46.16904382582698]
In Reinforcement Learning (RL), it is commonly assumed that an immediate reward signal is generated for each action taken by the agent.
In many real-world scenarios, designing immediate reward signals is difficult.
We propose a novel reward redistribution method equipped with a bidirectional attention mechanism.
arXiv Detail & Related papers (2024-02-06T07:26:44Z) - Task Phasing: Automated Curriculum Learning from Demonstrations [46.1680279122598]
Applying reinforcement learning to sparse reward domains is notoriously challenging due to insufficient guiding signals.
This paper introduces a principled task phasing approach that uses demonstrations to automatically generate a curriculum sequence.
Experimental results on 3 sparse reward domains demonstrate that our task phasing approaches outperform state-of-the-art approaches with respect to performance.
arXiv Detail & Related papers (2022-10-20T03:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.