Reinforcement Learning from Bagged Reward
- URL: http://arxiv.org/abs/2402.03771v3
- Date: Sat, 26 Oct 2024 08:00:40 GMT
- Title: Reinforcement Learning from Bagged Reward
- Authors: Yuting Tang, Xin-Qiang Cai, Yao-Xiang Ding, Qiyu Wu, Guoqing Liu, Masashi Sugiyama,
- Abstract summary: In Reinforcement Learning (RL), it is commonly assumed that an immediate reward signal is generated for each action taken by the agent.
In many real-world scenarios, designing immediate reward signals is difficult.
We propose a novel reward redistribution method equipped with a bidirectional attention mechanism.
- Score: 46.16904382582698
- License:
- Abstract: In Reinforcement Learning (RL), it is commonly assumed that an immediate reward signal is generated for each action taken by the agent, helping the agent maximize cumulative rewards to obtain the optimal policy. However, in many real-world scenarios, designing immediate reward signals is difficult; instead, agents receive a single reward that is contingent upon a partial sequence or a complete trajectory. In this work, we define this challenging problem as RL from Bagged Reward (RLBR), where sequences of data are treated as bags with non-Markovian bagged rewards, leading to the formulation of Bagged Reward Markov Decision Processes (BRMDPs). Theoretically, we demonstrate that RLBR can be addressed by solving a standard MDP with properly redistributed bagged rewards allocated to each instance within a bag. Empirically, we find that reward redistribution becomes more challenging as the bag length increases, due to reduced informational granularity. Existing reward redistribution methods are insufficient to address these challenges. Therefore, we propose a novel reward redistribution method equipped with a bidirectional attention mechanism, enabling the accurate interpretation of contextual nuances and temporal dependencies within each bag. We experimentally demonstrate that our proposed method consistently outperforms existing approaches.
Related papers
- Beyond Simple Sum of Delayed Rewards: Non-Markovian Reward Modeling for Reinforcement Learning [44.770495418026734]
Reinforcement Learning (RL) empowers agents to acquire various skills by learning from reward signals.
Traditional methods assume the existence of underlying Markovian rewards and that the observed delayed reward is simply the sum of instance-level rewards.
We propose Composite Delayed Reward Transformer (CoDeTr), which incorporates a specialized in-sequence attention mechanism.
arXiv Detail & Related papers (2024-10-26T13:12:27Z) - Discrete Probabilistic Inference as Control in Multi-path Environments [84.67055173040107]
We consider the problem of sampling from a discrete and structured distribution as a sequential decision problem.
We show that GFlowNets learn a policy that samples objects proportionally to their reward by enforcing a conservation of flows.
We also prove that some flow-matching objectives found in the GFlowNet literature are in fact equivalent to well-established MaxEnt RL algorithms with a corrected reward.
arXiv Detail & Related papers (2024-02-15T20:20:35Z) - Dense Reward for Free in Reinforcement Learning from Human Feedback [64.92448888346125]
We leverage the fact that the reward model contains more information than just its scalar output.
We use these attention weights to redistribute the reward along the whole completion.
Empirically, we show that it stabilises training, accelerates the rate of learning, and, in practical cases, may lead to better local optima.
arXiv Detail & Related papers (2024-02-01T17:10:35Z) - Noise Distribution Decomposition based Multi-Agent Distributional Reinforcement Learning [15.82785057592436]
Multi-Agent Reinforcement Learning (MARL) is more susceptible to noise due to the interference among intelligent agents.
We propose a novel decomposition-based multi-agent distributional RL method by approxing the globally shared noisy reward.
We also verify the effectiveness of the proposed method through extensive simulation experiments with noisy rewards.
arXiv Detail & Related papers (2023-12-12T07:24:15Z) - Interpretable Reward Redistribution in Reinforcement Learning: A Causal
Approach [45.83200636718999]
A major challenge in reinforcement learning is to determine which state-action pairs are responsible for future rewards that are delayed.
We propose to explicitly model the contributions of state and action from a causal perspective, resulting in an interpretable reward redistribution.
Experimental results show that our method outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-28T21:51:38Z) - Distributional Reward Estimation for Effective Multi-Agent Deep
Reinforcement Learning [19.788336796981685]
We propose a novel Distributional Reward Estimation framework for effective Multi-Agent Reinforcement Learning (DRE-MARL)
Our main idea is to design the multi-action-branch reward estimation and policy-weighted reward aggregation for stabilized training.
The superiority of the DRE-MARL is demonstrated using benchmark multi-agent scenarios, compared with the SOTA baselines in terms of both effectiveness and robustness.
arXiv Detail & Related papers (2022-10-14T08:31:45Z) - Learning Long-Term Reward Redistribution via Randomized Return
Decomposition [18.47810850195995]
We consider the problem formulation of episodic reinforcement learning with trajectory feedback.
It refers to an extreme delay of reward signals, in which the agent can only obtain one reward signal at the end of each trajectory.
We propose a novel reward redistribution algorithm, randomized return decomposition (RRD), to learn a proxy reward function for episodic reinforcement learning.
arXiv Detail & Related papers (2021-11-26T13:23:36Z) - Distributional Reinforcement Learning for Multi-Dimensional Reward
Functions [91.88969237680669]
We introduce Multi-Dimensional Distributional DQN (MD3QN) to model the joint return distribution from multiple reward sources.
As a by-product of joint distribution modeling, MD3QN can capture the randomness in returns for each source of reward.
In experiments, our method accurately models the joint return distribution in environments with richly correlated reward functions.
arXiv Detail & Related papers (2021-10-26T11:24:23Z) - Information Directed Reward Learning for Reinforcement Learning [64.33774245655401]
We learn a model of the reward function that allows standard RL algorithms to achieve high expected return with as few expert queries as possible.
In contrast to prior active reward learning methods designed for specific types of queries, IDRL naturally accommodates different query types.
We support our findings with extensive evaluations in multiple environments and with different types of queries.
arXiv Detail & Related papers (2021-02-24T18:46:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.