Can Agents Fix Agent Issues?
- URL: http://arxiv.org/abs/2505.20749v1
- Date: Tue, 27 May 2025 05:45:03 GMT
- Title: Can Agents Fix Agent Issues?
- Authors: Alfin Wijaya Rahardja, Junwei Liu, Weitong Chen, Zhenpeng Chen, Yiling Lou,
- Abstract summary: LLM-based agent systems are emerging as a new software paradigm and have been widely adopted across diverse domains such as medicine, robotics, and programming.<n>Maintaining these systems requires substantial effort, as they are inevitably prone to bugs and continually evolve to meet changing external requirements.<n>Recent software engineering (SE) agents have shown promise in addressing issues in traditional software systems, but it remains unclear how effectively they can resolve real-world issues in agent systems.
- Score: 11.464925706722982
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: LLM-based agent systems are emerging as a new software paradigm and have been widely adopted across diverse domains such as medicine, robotics, and programming. However, maintaining these systems requires substantial effort, as they are inevitably prone to bugs and continually evolve to meet changing external requirements. Therefore, automatically resolving agent issues (i.e., bug reports or feature requests) is a crucial and challenging task. While recent software engineering (SE) agents (e.g., SWE-agent) have shown promise in addressing issues in traditional software systems, it remains unclear how effectively they can resolve real-world issues in agent systems, which differ significantly from traditional software. To fill this gap, we first manually analyze 201 real-world agent issues and identify common categories of agent issues. We then spend 500 person-hours constructing AGENTISSUE-BENCH, a reproducible benchmark comprising 50 agent issue resolution tasks (each with an executable environment and failure-triggering tests). We further evaluate state-of-the-art SE agents on AGENTISSUE-BENCH and reveal their limited effectiveness (i.e., with only 3.33% - 12.67% resolution rates). These results underscore the unique challenges of maintaining agent systems compared to traditional software, highlighting the need for further research to develop advanced SE agents for resolving agent issues. Data and code are available at https://alfin06.github.io/AgentIssue-Bench-Leaderboard/#/ .
Related papers
- R&D-Agent: Automating Data-Driven AI Solution Building Through LLM-Powered Automated Research, Development, and Evolution [60.80016554091364]
R&D-Agent is a dual-agent framework for iterative exploration.<n>The Researcher agent uses performance feedback to generate ideas, while the Developer agent refines code based on error feedback.<n>R&D-Agent is evaluated on MLE-Bench and emerges as the top-performing machine learning engineering agent.
arXiv Detail & Related papers (2025-05-20T06:07:00Z) - Which Agent Causes Task Failures and When? On Automated Failure Attribution of LLM Multi-Agent Systems [50.29939179830491]
Failure attribution in LLM multi-agent systems remains underexplored and labor-intensive.<n>We develop and evaluate three automated failure attribution methods, summarizing their corresponding pros and cons.<n>The best method achieves 53.5% accuracy in identifying failure-responsible agents but only 14.2% in pinpointing failure steps.
arXiv Detail & Related papers (2025-04-30T23:09:44Z) - Towards Adaptive Software Agents for Debugging [0.40964539027092917]
We propose an adaptive agentic design, where the number of agents and their roles are determined dynamically.<n>Our initial evaluation shows that, with the adaptive design, the number of agents that are generated depends on the complexity of the buggy code.<n> Regarding the effectiveness of the fix, we noticed an average improvement of 11% compared to the one-shot prompting.
arXiv Detail & Related papers (2025-04-25T12:48:08Z) - Unveiling Pitfalls: Understanding Why AI-driven Code Agents Fail at GitHub Issue Resolution [22.03052751722933]
Python execution errors during the issue resolution phase correlate with lower resolution rates and increased reasoning overheads.<n>We have identified the most prevalent errors -- such as ModuleNotFoundError and TypeError -- and highlighted particularly challenging errors like OSError and database-related issues.
arXiv Detail & Related papers (2025-03-16T06:24:51Z) - TheAgentCompany: Benchmarking LLM Agents on Consequential Real World Tasks [52.46737975742287]
We introduce TheAgentCompany, a benchmark for evaluating AI agents that interact with the world in similar ways to those of a digital worker.<n>We find that the most competitive agent can complete 30% of tasks autonomously.<n>This paints a nuanced picture on task automation with simulating LM agents in a setting a real workplace.
arXiv Detail & Related papers (2024-12-18T18:55:40Z) - Evaluating Software Development Agents: Patch Patterns, Code Quality, and Issue Complexity in Real-World GitHub Scenarios [13.949319911378826]
This study evaluated 4,892 patches from 10 top-ranked agents on 500 real-world GitHub issues.<n>No single agent dominated, with 170 issues unresolved, indicating room for improvement.<n>Most agents maintained code reliability and security, avoiding new bugs or vulnerabilities.<n>Some agents increased code complexity, many reduced code duplication and minimized code smells.
arXiv Detail & Related papers (2024-10-16T11:33:57Z) - Agent-as-a-Judge: Evaluate Agents with Agents [61.33974108405561]
We introduce the Agent-as-a-Judge framework, wherein agentic systems are used to evaluate agentic systems.
This is an organic extension of the LLM-as-a-Judge framework, incorporating agentic features that enable intermediate feedback for the entire task-solving process.
We present DevAI, a new benchmark of 55 realistic automated AI development tasks.
arXiv Detail & Related papers (2024-10-14T17:57:02Z) - Agentless: Demystifying LLM-based Software Engineering Agents [12.19683999553113]
We build Agentless -- an agentless approach to automatically solve software development problems.
Compared to the verbose and complex setup of agent-based approaches, Agentless employs a simplistic three-phase process of localization, repair, and patch validation.
Our results on the popular SWE-bench Lite benchmark show that surprisingly the simplistic Agentless is able to achieve both the highest performance and low cost.
arXiv Detail & Related papers (2024-07-01T17:24:45Z) - AgentGym: Evolving Large Language Model-based Agents across Diverse Environments [116.97648507802926]
Large language models (LLMs) are considered a promising foundation to build such agents.
We take the first step towards building generally-capable LLM-based agents with self-evolution ability.
We propose AgentGym, a new framework featuring a variety of environments and tasks for broad, real-time, uni-format, and concurrent agent exploration.
arXiv Detail & Related papers (2024-06-06T15:15:41Z) - SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering [79.07755560048388]
SWE-agent is a system that facilitates LM agents to autonomously use computers to solve software engineering tasks.
SWE-agent's custom agent-computer interface (ACI) significantly enhances an agent's ability to create and edit code files, navigate entire repositories, and execute tests and other programs.
We evaluate SWE-agent on SWE-bench and HumanEvalFix, achieving state-of-the-art performance on both with a pass@1 rate of 12.5% and 87.7%, respectively.
arXiv Detail & Related papers (2024-05-06T17:41:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.