R&D-Agent: Automating Data-Driven AI Solution Building Through LLM-Powered Automated Research, Development, and Evolution
- URL: http://arxiv.org/abs/2505.14738v1
- Date: Tue, 20 May 2025 06:07:00 GMT
- Title: R&D-Agent: Automating Data-Driven AI Solution Building Through LLM-Powered Automated Research, Development, and Evolution
- Authors: Xu Yang, Xiao Yang, Shikai Fang, Bowen Xian, Yuante Li, Jian Wang, Minrui Xu, Haoran Pan, Xinpeng Hong, Weiqing Liu, Yelong Shen, Weizhu Chen, Jiang Bian,
- Abstract summary: R&D-Agent is a dual-agent framework for iterative exploration.<n>The Researcher agent uses performance feedback to generate ideas, while the Developer agent refines code based on error feedback.<n>R&D-Agent is evaluated on MLE-Bench and emerges as the top-performing machine learning engineering agent.
- Score: 60.80016554091364
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent advances in AI and ML have transformed data science, yet increasing complexity and expertise requirements continue to hinder progress. While crowdsourcing platforms alleviate some challenges, high-level data science tasks remain labor-intensive and iterative. To overcome these limitations, we introduce R&D-Agent, a dual-agent framework for iterative exploration. The Researcher agent uses performance feedback to generate ideas, while the Developer agent refines code based on error feedback. By enabling multiple parallel exploration traces that merge and enhance one another, R&D-Agent narrows the gap between automated solutions and expert-level performance. Evaluated on MLE-Bench, R&D-Agent emerges as the top-performing machine learning engineering agent, demonstrating its potential to accelerate innovation and improve precision across diverse data science applications. We have open-sourced R&D-Agent on GitHub: https://github.com/microsoft/RD-Agent.
Related papers
- SE-Agent: Self-Evolution Trajectory Optimization in Multi-Step Reasoning with LLM-Based Agents [43.74003959397812]
Large Language Model (LLM)-based agents have recently shown impressive capabilities in complex reasoning and tool use via multi-step interactions with their environments.<n>These trajectories contain rich feedback that can navigate agents toward the right directions for solving problems correctly.<n>Although prevailing approaches, such as Monte Carlo Tree Search (MCTS), can effectively balance exploration and exploitation, they ignore the interdependence among various trajectories.<n>We propose SE-Agent, a Self-Evolution framework that enables Agents to optimize their reasoning processes iteratively.
arXiv Detail & Related papers (2025-08-04T05:51:55Z) - Graphs Meet AI Agents: Taxonomy, Progress, and Future Opportunities [117.49715661395294]
Data structurization can play a promising role by transforming intricate and disorganized data into well-structured forms.<n>This survey presents a first systematic review of how graphs can empower AI agents.
arXiv Detail & Related papers (2025-06-22T12:59:12Z) - EvolveSearch: An Iterative Self-Evolving Search Agent [98.18686493123785]
Large language models (LLMs) have transformed agentic information seeking capabilities through the integration of tools such as search engines and web browsers.<n>We propose EvolveSearch, a novel iterative self-evolution framework that combines SFT and RL to enhance agentic web search capabilities without any external human-annotated reasoning data.
arXiv Detail & Related papers (2025-05-28T15:50:48Z) - R&D-Agent-Quant: A Multi-Agent Framework for Data-Centric Factors and Model Joint Optimization [19.301233249500655]
Financial markets pose fundamental challenges for asset return prediction due to their high dimensionality, non-stationarity, and persistent volatility.<n>Despite advances in large language models and multi-agent systems, current quantitative research pipelines suffer from limited automation, weak interpretability, and fragmented coordination across key components such as factor mining and model innovation.<n>We propose R&D-Agent for Quantitative Finance, in short RD-Agent(Q), the first data-centric multi-agent framework designed to automate the full-stack research and development of quantitative strategies via coordinated factor-model co-optimization.
arXiv Detail & Related papers (2025-05-21T06:20:56Z) - ResearchCodeAgent: An LLM Multi-Agent System for Automated Codification of Research Methodologies [16.90884865239373]
We introduce ResearchCodeAgent, a novel multi-agent system to automate the codification of research methodologies.<n>The system bridges the gap between high-level research concepts and their practical implementation.<n>ResearchCodeAgent represents a significant step towards the research implementation process, potentially accelerating the pace of machine learning research.
arXiv Detail & Related papers (2025-04-28T07:18:45Z) - OR-LLM-Agent: Automating Modeling and Solving of Operations Research Optimization Problem with Reasoning Large Language Model [2.138587105340617]
Operations Research (OR) has been widely applied in various fields such as resource allocation, production planning, and supply chain management.<n>Traditional method, heavily reliant on experts, is costly and has long development cycles.<n>We propose OR-LLM-Agent, the first AI agent that enables end-to-end automation for solving real-world OR problems.
arXiv Detail & Related papers (2025-03-13T03:40:50Z) - ML Research Benchmark [0.0]
We present the ML Research Benchmark (MLRB), comprising 7 competition-level tasks derived from recent machine learning conference tracks.
This paper introduces a novel benchmark and evaluates it using agent scaffolds powered by frontier models, including Claude-3 and GPT-4o.
The results indicate that the Claude-3.5 Sonnet agent performs best across our benchmark, excelling in planning and developing machine learning models.
arXiv Detail & Related papers (2024-10-29T21:38:42Z) - Agentless: Demystifying LLM-based Software Engineering Agents [12.19683999553113]
We build Agentless -- an agentless approach to automatically solve software development problems.
Compared to the verbose and complex setup of agent-based approaches, Agentless employs a simplistic three-phase process of localization, repair, and patch validation.
Our results on the popular SWE-bench Lite benchmark show that surprisingly the simplistic Agentless is able to achieve both the highest performance and low cost.
arXiv Detail & Related papers (2024-07-01T17:24:45Z) - EvoAgent: Towards Automatic Multi-Agent Generation via Evolutionary Algorithms [55.77492625524141]
EvoAgent is a generic method to automatically extend specialized agents to multi-agent systems.<n>We show that EvoAgent can significantly enhance the task-solving capability of LLM-based agents.
arXiv Detail & Related papers (2024-06-20T11:49:23Z) - DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning [56.887047551101574]
We present DS-Agent, a novel framework that harnesses large language models (LLMs) agent and case-based reasoning (CBR)
In the development stage, DS-Agent follows the CBR framework to structure an automatic iteration pipeline, which can flexibly capitalize on the expert knowledge from Kaggle.
In the deployment stage, DS-Agent implements a low-resource deployment stage with a simplified CBR paradigm, significantly reducing the demand on foundational capabilities of LLMs.
arXiv Detail & Related papers (2024-02-27T12:26:07Z) - MLAgentBench: Evaluating Language Agents on Machine Learning Experimentation [96.71370747681078]
We introduce MLAgentBench, a suite of 13 tasks ranging from improving model performance on CIFAR-10 to recent research problems like BabyLM.
For each task, an agent can perform actions like reading/writing files, executing code, and inspecting outputs.
We benchmark agents based on Claude v1.0, Claude v2.1, Claude v3 Opus, GPT-4, GPT-4-turbo, Gemini-Pro, and Mixtral and find that a Claude v3 Opus agent is the best in terms of success rate.
arXiv Detail & Related papers (2023-10-05T04:06:12Z) - Retrieval-Augmented Reinforcement Learning [63.32076191982944]
We train a network to map a dataset of past experiences to optimal behavior.
The retrieval process is trained to retrieve information from the dataset that may be useful in the current context.
We show that retrieval-augmented R2D2 learns significantly faster than the baseline R2D2 agent and achieves higher scores.
arXiv Detail & Related papers (2022-02-17T02:44:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.