Fork-Merge Decoding: Enhancing Multimodal Understanding in Audio-Visual Large Language Models
- URL: http://arxiv.org/abs/2505.20873v1
- Date: Tue, 27 May 2025 08:22:56 GMT
- Title: Fork-Merge Decoding: Enhancing Multimodal Understanding in Audio-Visual Large Language Models
- Authors: Chaeyoung Jung, Youngjoon Jang, Jongmin Choi, Joon Son Chung,
- Abstract summary: The goal of this work is to enhance balanced multimodal understanding in audio-visual large language models (AV-LLMs)<n>In current AV-LLMs, audio and video features are typically processed jointly in the decoder.<n>We propose Fork-Merge Decoding (FMD), a simple yet effective inference-time strategy that requires no additional training or architectural modifications.
- Score: 13.887164304514101
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The goal of this work is to enhance balanced multimodal understanding in audio-visual large language models (AV-LLMs) by addressing modality bias without requiring additional training. In current AV-LLMs, audio and video features are typically processed jointly in the decoder. While this strategy facilitates unified multimodal understanding, it may introduce modality bias, where the model tends to over-rely on one modality due to imbalanced training signals. To mitigate this, we propose Fork-Merge Decoding (FMD), a simple yet effective inference-time strategy that requires no additional training or architectural modifications. FMD first performs modality-specific reasoning by processing audio-only and video-only inputs through the early decoder layers (a fork phase), and then merges the resulting hidden states for joint reasoning in the remaining layers (a merge phase). This approach promotes balanced modality contributions and leverages complementary information across modalities. We evaluate our method on two representative AV-LLMs, VideoLLaMA2 and video-SALMONN, using three benchmark datasets. Experimental results demonstrate consistent performance improvements on tasks focused on audio, video, and combined audio-visual reasoning, demonstrating the effectiveness of inference-time interventions for robust multimodal understanding.
Related papers
- MoCa: Modality-aware Continual Pre-training Makes Better Bidirectional Multimodal Embeddings [75.0617088717528]
MoCa is a framework for transforming pre-trained VLM backbones into effective bidirectional embedding models.<n>MoCa consistently improves performance across MMEB and ViDoRe-v2 benchmarks, achieving new state-of-the-art results.
arXiv Detail & Related papers (2025-06-29T06:41:00Z) - PreFM: Online Audio-Visual Event Parsing via Predictive Future Modeling [78.61911985138795]
We introduce Online Audio-Visual Event Parsing (On-AVEP), a novel paradigm for parsing audio, visual, and audio-visual events by sequentially analyzing incoming video streams.<n>We propose the Predictive Future Modeling framework featured by (a) predictive multimodal future modeling to infer and integrate beneficial future audio-visual cues.<n>Experiments show PreFM significantly outperforms state-of-the-art methods by a large margin with significantly fewer parameters.
arXiv Detail & Related papers (2025-05-29T06:46:19Z) - DGFNet: End-to-End Audio-Visual Source Separation Based on Dynamic Gating Fusion [1.292190360867547]
Current Audio-Visual Source Separation methods primarily adopt two design strategies.<n>The first strategy involves fusing audio and visual features at the bottleneck layer of the encoder, followed by processing the fused features through the decoder.<n>The second strategy avoids direct fusion and instead relies on the decoder to handle the interaction between audio and visual features.<n>This paper proposes a dynamic fusion method based on a gating mechanism that dynamically adjusts the modality fusion degree.
arXiv Detail & Related papers (2025-04-30T06:55:24Z) - Adaptive Audio-Visual Speech Recognition via Matryoshka-Based Multimodal LLMs [33.12165044958361]
Recent advancements in Large Language Models (LLMs) have demonstrated their effectiveness in speech recognition, including Audio-Visual Speech Recognition (AVSR)<n>Due to the significant length of speech representations, direct integration with LLMs imposes substantial computational costs.<n>We propose Llama-MTSK, the first Matryoshka-based Multimodal LLM for AVSR, which enables flexible adaptation of the audio-visual token allocation.
arXiv Detail & Related papers (2025-03-09T00:02:10Z) - Browse and Concentrate: Comprehending Multimodal Content via prior-LLM Context Fusion [70.9767518332692]
Multimodal Large Language Models (MLLMs) that incorporate LLMs with pre-trained vision models have recently demonstrated impressive performance across diverse vision-language tasks.
However, they fall short to comprehend context involving multiple images.
We propose a two phase paradigm, browse-and-concentrate, to enable in-depth multimodal context fusion.
arXiv Detail & Related papers (2024-02-19T14:59:07Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
We propose two novel techniques to improve audio-visual speech recognition (AVSR) under a pre-training and fine-tuning training framework.
First, we explore the correlation between lip shapes and syllable-level subword units in Mandarin to establish good frame-level syllable boundaries from lip shapes.
Next, we propose an audio-guided cross-modal fusion encoder (CMFE) neural network to utilize main training parameters for multiple cross-modal attention layers.
arXiv Detail & Related papers (2023-08-14T08:19:24Z) - Visually-Guided Sound Source Separation with Audio-Visual Predictive
Coding [57.08832099075793]
Visually-guided sound source separation consists of three parts: visual feature extraction, multimodal feature fusion, and sound signal processing.
This paper presents audio-visual predictive coding (AVPC) to tackle this task in parameter harmonizing and more effective manner.
In addition, we develop a valid self-supervised learning strategy for AVPC via co-predicting two audio-visual representations of the same sound source.
arXiv Detail & Related papers (2023-06-19T03:10:57Z) - Probing Visual-Audio Representation for Video Highlight Detection via
Hard-Pairs Guided Contrastive Learning [23.472951216815765]
Key to effective video representations is cross-modal representation learning and fine-grained feature discrimination.
In this paper, we enrich intra-modality and cross-modality relations for representation modeling.
We enlarge the discriminative power of feature embedding with a hard-pairs guided contrastive learning scheme.
arXiv Detail & Related papers (2022-06-21T07:29:37Z) - Learnable Irrelevant Modality Dropout for Multimodal Action Recognition
on Modality-Specific Annotated Videos [10.478479158063982]
We propose a novel framework to effectively leverage the audio modality in vision-specific annotated videos for action recognition.
We build a semantic audio-video label dictionary (SAVLD) that maps each video label to its most K-relevant audio labels.
We also present a new two-stream video Transformer for efficiently modeling the visual modalities.
arXiv Detail & Related papers (2022-03-06T17:31:06Z) - Leveraging Uni-Modal Self-Supervised Learning for Multimodal
Audio-Visual Speech Recognition [23.239078852797817]
We leverage uni-modal self-supervised learning to promote the multimodal audio-visual speech recognition (AVSR)
In particular, we first train audio and visual encoders on a large-scale uni-modal dataset, then we integrate components of both encoders into a larger multimodal framework.
Our model is experimentally validated on both word-level and sentence-level AVSR tasks.
arXiv Detail & Related papers (2022-02-24T15:12:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.