Can LLMs Learn to Map the World from Local Descriptions?
- URL: http://arxiv.org/abs/2505.20874v1
- Date: Tue, 27 May 2025 08:22:58 GMT
- Title: Can LLMs Learn to Map the World from Local Descriptions?
- Authors: Sirui Xia, Aili Chen, Xintao Wang, Tinghui Zhu, Yikai Zhang, Jiangjie Chen, Yanghua Xiao,
- Abstract summary: This study investigates whether Large Language Models (LLMs) can construct coherent global spatial cognition.<n> Experiments conducted in a simulated urban environment demonstrate that LLMs exhibit latent representations aligned with real-world spatial distributions.
- Score: 50.490593949836146
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in Large Language Models (LLMs) have demonstrated strong capabilities in tasks such as code and mathematics. However, their potential to internalize structured spatial knowledge remains underexplored. This study investigates whether LLMs, grounded in locally relative human observations, can construct coherent global spatial cognition by integrating fragmented relational descriptions. We focus on two core aspects of spatial cognition: spatial perception, where models infer consistent global layouts from local positional relationships, and spatial navigation, where models learn road connectivity from trajectory data and plan optimal paths between unconnected locations. Experiments conducted in a simulated urban environment demonstrate that LLMs not only generalize to unseen spatial relationships between points of interest (POIs) but also exhibit latent representations aligned with real-world spatial distributions. Furthermore, LLMs can learn road connectivity from trajectory descriptions, enabling accurate path planning and dynamic spatial awareness during navigation.
Related papers
- Can Large Language Models Integrate Spatial Data? Empirical Insights into Reasoning Strengths and Computational Weaknesses [11.330846631937671]
We explore the application of large language models (LLMs) to empower domain experts in integrating large, heterogeneous, and noisy urban spatial datasets.<n>We show that while LLMs exhibit spatial reasoning capabilities, they struggle to connect the macro-scale environment with the relevant computational geometry tasks.<n>We then adapt a review-and-refine method, which proves remarkably effective in correcting erroneous initial responses while preserving accurate responses.
arXiv Detail & Related papers (2025-08-07T03:44:20Z) - SpatialLLM: From Multi-modality Data to Urban Spatial Intelligence [13.810192130250744]
The core of SpatialLLM lies in constructing detailed and structured scene descriptions from raw spatial data to prompt pre-trained LLMs for scene-based analysis.<n>Extensive experiments show that, with our designs, pretrained LLMs can accurately perceive spatial distribution information.<n>We argue that multi-field knowledge, context length, and reasoning ability are key factors influencing LLM performances in urban analysis.
arXiv Detail & Related papers (2025-05-19T04:53:41Z) - OmniGeo: Towards a Multimodal Large Language Models for Geospatial Artificial Intelligence [51.0456395687016]
multimodal large language models (LLMs) have opened new frontiers in artificial intelligence.<n>We propose a MLLM (OmniGeo) tailored to geospatial applications.<n>By combining the strengths of natural language understanding and spatial reasoning, our model enhances the ability of instruction following and the accuracy of GeoAI systems.
arXiv Detail & Related papers (2025-03-20T16:45:48Z) - Dynamic Path Navigation for Motion Agents with LLM Reasoning [69.5875073447454]
Large Language Models (LLMs) have demonstrated strong generalizable reasoning and planning capabilities.<n>We explore the zero-shot navigation and path generation capabilities of LLMs by constructing a dataset and proposing an evaluation protocol.<n>We demonstrate that, when tasks are well-structured in this manner, modern LLMs exhibit substantial planning proficiency in avoiding obstacles while autonomously refining navigation with the generated motion to reach the target.
arXiv Detail & Related papers (2025-03-10T13:39:09Z) - From Text to Space: Mapping Abstract Spatial Models in LLMs during a Grid-World Navigation Task [0.0]
We investigate the influence of different text-based spatial representations on large language models (LLMs) performance and internal activations in a grid-world navigation task.<n>Our experiments reveal that cartesian representations of space consistently yield higher success rates and path efficiency, with performance scaling markedly with model size.<n>This work advances our understanding of how LLMs process spatial information and provides valuable insights for developing more interpretable and robust agentic AI systems.
arXiv Detail & Related papers (2025-02-23T19:09:01Z) - Evaluating the Effectiveness of Large Language Models in Representing and Understanding Movement Trajectories [1.3658544194443192]
This research focuses on assessing the ability of AI foundation models in representing the trajectories of movements.
We utilize one of the large language models (LLMs) to encode the string format of trajectories and then evaluate the effectiveness of the LLM-based representation for trajectory data analysis.
arXiv Detail & Related papers (2024-08-31T02:57:25Z) - LLM-A*: Large Language Model Enhanced Incremental Heuristic Search on Path Planning [91.95362946266577]
Path planning is a fundamental scientific problem in robotics and autonomous navigation.<n>Traditional algorithms like A* and its variants are capable of ensuring path validity but suffer from significant computational and memory inefficiencies as the state space grows.<n>We propose a new LLM based route planning method that synergistically combines the precise pathfinding capabilities of A* with the global reasoning capability of LLMs.<n>This hybrid approach aims to enhance pathfinding efficiency in terms of time and space complexity while maintaining the integrity of path validity, especially in large-scale scenarios.
arXiv Detail & Related papers (2024-06-20T01:24:30Z) - SpaRC and SpaRP: Spatial Reasoning Characterization and Path Generation for Understanding Spatial Reasoning Capability of Large Language Models [70.01883340129204]
spatial reasoning is a crucial component of both biological and artificial intelligence.
We present a comprehensive study of the capability of current state-of-the-art large language models (LLMs) on spatial reasoning.
arXiv Detail & Related papers (2024-06-07T01:06:34Z) - A systematic review of geospatial location embedding approaches in large
language models: A path to spatial AI systems [0.0]
Geospatial Location Embedding (GLE) helps a Large Language Model (LLM) assimilate and analyze spatial data.
GLEs signal the need for a Spatial Foundation/Language Model (SLM) that embeds spatial knowing within the model architecture.
arXiv Detail & Related papers (2024-01-12T12:43:33Z) - Multi-Temporal Relationship Inference in Urban Areas [75.86026742632528]
Finding temporal relationships among locations can benefit a bunch of urban applications, such as dynamic offline advertising and smart public transport planning.
We propose a solution to Trial with a graph learning scheme, which includes a spatially evolving graph neural network (SEENet)
SEConv performs the intra-time aggregation and inter-time propagation to capture the multifaceted spatially evolving contexts from the view of location message passing.
SE-SSL designs time-aware self-supervised learning tasks in a global-local manner with additional evolving constraint to enhance the location representation learning and further handle the relationship sparsity.
arXiv Detail & Related papers (2023-06-15T07:48:32Z) - An Entropy-guided Reinforced Partial Convolutional Network for Zero-Shot
Learning [77.72330187258498]
We propose a novel Entropy-guided Reinforced Partial Convolutional Network (ERPCNet)
ERPCNet extracts and aggregates localities based on semantic relevance and visual correlations without human-annotated regions.
It not only discovers global-cooperative localities dynamically but also converges faster for policy gradient optimization.
arXiv Detail & Related papers (2021-11-03T11:13:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.