Revisiting Multi-Agent World Modeling from a Diffusion-Inspired Perspective
- URL: http://arxiv.org/abs/2505.20922v1
- Date: Tue, 27 May 2025 09:11:38 GMT
- Title: Revisiting Multi-Agent World Modeling from a Diffusion-Inspired Perspective
- Authors: Yang Zhang, Xinran Li, Jianing Ye, Delin Qu, Shuang Qiu, Chongjie Zhang, Xiu Li, Chenjia Bai,
- Abstract summary: We develop a flexible and robust world model for Multi-Agent Reinforcement Learning (MARL) using diffusion models.<n>Our method, Diffusion-Inspired Multi-Agent world model (DIMA), achieves state-of-the-art performance across multiple multi-agent control benchmarks.
- Score: 45.44355861030715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: World models have recently attracted growing interest in Multi-Agent Reinforcement Learning (MARL) due to their ability to improve sample efficiency for policy learning. However, accurately modeling environments in MARL is challenging due to the exponentially large joint action space and highly uncertain dynamics inherent in multi-agent systems. To address this, we reduce modeling complexity by shifting from jointly modeling the entire state-action transition dynamics to focusing on the state space alone at each timestep through sequential agent modeling. Specifically, our approach enables the model to progressively resolve uncertainty while capturing the structured dependencies among agents, providing a more accurate representation of how agents influence the state. Interestingly, this sequential revelation of agents' actions in a multi-agent system aligns with the reverse process in diffusion models--a class of powerful generative models known for their expressiveness and training stability compared to autoregressive or latent variable models. Leveraging this insight, we develop a flexible and robust world model for MARL using diffusion models. Our method, Diffusion-Inspired Multi-Agent world model (DIMA), achieves state-of-the-art performance across multiple multi-agent control benchmarks, significantly outperforming prior world models in terms of final return and sample efficiency, including MAMuJoCo and Bi-DexHands. DIMA establishes a new paradigm for constructing multi-agent world models, advancing the frontier of MARL research.
Related papers
- Transformer World Model for Sample Efficient Multi-Agent Reinforcement Learning [2.3964255330849356]
We present the Multi-Agent Transformer World Model (MATWM), a novel transformer-based world model for reinforcement learning.<n>MATWM combines a decentralized imagination framework with a semi-centralized critic and a teammate prediction module.<n>We evaluate MATWM on a broad suite of benchmarks, including the StarCraft Multi-Agent Challenge, PettingZoo, and MeltingPot.
arXiv Detail & Related papers (2025-06-23T11:47:17Z) - Consistent World Models via Foresight Diffusion [56.45012929930605]
We argue that a key bottleneck in learning consistent diffusion-based world models lies in the suboptimal predictive ability.<n>We propose Foresight Diffusion (ForeDiff), a diffusion-based world modeling framework that enhances consistency by decoupling condition understanding from target denoising.
arXiv Detail & Related papers (2025-05-22T10:01:59Z) - Multi-modal Synthetic Data Training and Model Collapse: Insights from VLMs and Diffusion Models [24.73190742678142]
We study the risk of generative model collapse in multi-modal vision-language generative systems.<n>We find that model collapse exhibits distinct characteristics in the multi-modal context, such as improved vision-language alignment and increased variance in image-captioning task.<n>Our findings provide initial insights and practical guidelines for reducing the risk of model collapse in self-improving multi-agent AI systems.
arXiv Detail & Related papers (2025-05-10T22:42:29Z) - Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their capabilities across different tasks and domains.<n>Current model merging techniques focus on merging all available models simultaneously, with weight matrices-based methods being the predominant approaches.<n>We propose a training-free projection-based continual merging method that processes models sequentially.
arXiv Detail & Related papers (2025-01-16T13:17:24Z) - Masked Generative Priors Improve World Models Sequence Modelling Capabilities [19.700020499490137]
Masked Generative Modelling has emerged as a more efficient and superior inductive bias for modelling.<n>GIT-STORM demonstrates substantial performance gains in RL tasks on the Atari 100k benchmark.<n>We apply Transformer-based World Models to continuous action environments for the first time, addressing a significant gap in prior research.
arXiv Detail & Related papers (2024-10-10T11:52:07Z) - Decentralized Transformers with Centralized Aggregation are Sample-Efficient Multi-Agent World Models [106.94827590977337]
We propose a novel world model for Multi-Agent RL (MARL) that learns decentralized local dynamics for scalability.
We also introduce a Perceiver Transformer as an effective solution to enable centralized representation aggregation.
Results on Starcraft Multi-Agent Challenge (SMAC) show that it outperforms strong model-free approaches and existing model-based methods in both sample efficiency and overall performance.
arXiv Detail & Related papers (2024-06-22T12:40:03Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Diffusion for World Modeling: Visual Details Matter in Atari [22.915802013352465]
We introduce DIAMOND (DIffusion As a Model Of eNvironment Dreams), a reinforcement learning agent trained in a diffusion world model.
We analyze the key design choices that are required to make diffusion suitable for world modeling, and demonstrate how improved visual details can lead to improved agent performance.
DIAMOND achieves a mean human normalized score of 1.46 on the competitive Atari 100k benchmark; a new best for agents trained entirely within a world model.
arXiv Detail & Related papers (2024-05-20T22:51:05Z) - Leveraging World Model Disentanglement in Value-Based Multi-Agent
Reinforcement Learning [18.651307543537655]
We propose a novel model-based multi-agent reinforcement learning approach named Value Decomposition Framework with Disentangled World Model.
We present experimental results in Easy, Hard, and Super-Hard StarCraft II micro-management challenges to demonstrate that our method achieves high sample efficiency and exhibits superior performance in defeating the enemy armies compared to other baselines.
arXiv Detail & Related papers (2023-09-08T22:12:43Z) - MADiff: Offline Multi-agent Learning with Diffusion Models [79.18130544233794]
MADiff is a diffusion-based multi-agent learning framework.<n>It works as both a decentralized policy and a centralized controller.<n>Our experiments demonstrate that MADiff outperforms baseline algorithms across various multi-agent learning tasks.
arXiv Detail & Related papers (2023-05-27T02:14:09Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.