論文の概要: ISAC: Training-Free Instance-to-Semantic Attention Control for Improving Multi-Instance Generation
- arxiv url: http://arxiv.org/abs/2505.20935v1
- Date: Tue, 27 May 2025 09:23:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-28 17:05:58.543826
- Title: ISAC: Training-Free Instance-to-Semantic Attention Control for Improving Multi-Instance Generation
- Title(参考訳): ISAC:マルチインスタンス生成改善のためのトレーニング不要インスタンス対セマンティックアテンション制御
- Authors: Sanghyun Jo, Wooyeol Lee, Ziseok Lee, Kyungsu Kim,
- Abstract要約: インスタンス・ツー・セマンティック・アテンション・コントロール(ISAC)は、不完全なインスタンスの形成とセマンティック・エンタングルメントを明示的に解決する。
ISACは平均マルチクラス精度が52%、平均マルチインスタンス精度が83%に達する。
- 参考スコア(独自算出の注目度): 1.3624495460189863
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text-to-image diffusion models excel at generating single-instance scenes but struggle with multi-instance scenarios, often merging or omitting objects. Unlike previous training-free approaches that rely solely on semantic-level guidance without addressing instance individuation, our training-free method, Instance-to-Semantic Attention Control (ISAC), explicitly resolves incomplete instance formation and semantic entanglement through an instance-first modeling approach. This enables ISAC to effectively leverage a hierarchical, tree-structured prompt mechanism, disentangling multiple object instances and individually aligning them with their corresponding semantic labels. Without employing any external models, ISAC achieves up to 52% average multi-class accuracy and 83% average multi-instance accuracy by effectively forming disentangled instances. The code will be made available upon publication.
- Abstract(参考訳): テキストと画像の拡散モデルは、単一インスタンスのシーンを生成するのに優れているが、多インスタンスのシナリオに苦しむ。
インスタンスの個別化に対処せずにセマンティックレベルのガイダンスにのみ依存する従来のトレーニングフリーアプローチとは異なり、当社のトレーニングフリーメソッドであるISACは、インスタンスファーストモデリングアプローチを通じて、不完全なインスタンス生成とセマンティックエンタングルメントを明示的に解決する。
これにより、ISACは階層的で木構造的なプロンプトメカニズムを効果的に活用し、複数のオブジェクトインスタンスをアンタングし、対応するセマンティックラベルと個別にアライメントすることができる。
外部モデルを使用しないISACは、非絡み合ったインスタンスを効果的に形成することにより、平均52%のマルチクラスの精度と平均83%のマルチインスタンスの精度を達成する。
コードは公開時に公開されます。
関連論文リスト
- Segment Any Class (SAC): Multi-Class Few-Shot Semantic Segmentation via Class Region Proposals [0.0]
本稿では,Segment Any Class (SAC) を提案する。Segment Any Class (SAC) は多クラスセグメンテーションのためにSAMをタスク適応する訓練不要のアプローチである。
SACはクエリイメージ上でクラスレギュレーション提案(CRP)を生成し、クラス認識プロンプトを自動的に生成する。
SACは自動プロンプトのみを利用し、COCO-20iベンチマークの最先端手法よりも優れた結果が得られる。
論文 参考訳(メタデータ) (2024-11-21T01:04:53Z) - Instance Consistency Regularization for Semi-Supervised 3D Instance Segmentation [50.51125319374404]
ラベルのないデータから純粋なインスタンス知識を探索し活用するための,新たな自己学習ネットワークInsTeacher3Dを提案する。
複数の大規模データセットの実験結果から、InsTeacher3Dは最先端の半教師付きアプローチよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-06-24T16:35:58Z) - Weakly Supervised 3D Instance Segmentation without Instance-level
Annotations [57.615325809883636]
3Dセマンティックシーン理解タスクは、ディープラーニングの出現によって大きな成功を収めた。
本稿では,分類的セマンティックラベルのみを監督対象とする,弱制御型3Dインスタンスセマンティクス手法を提案する。
分類的セマンティックラベルから擬似インスタンスラベルを生成することで,アノテーションコストの低減で既存の3Dインスタンスセグメンテーションの学習を支援することができる。
論文 参考訳(メタデータ) (2023-08-03T12:30:52Z) - Rethinking Multiple Instance Learning for Whole Slide Image Classification: A Good Instance Classifier is All You Need [18.832471712088353]
MIL設定下では,インスタンスレベルの弱教師付きコントラスト学習アルゴリズムを初めて提案する。
また,プロトタイプ学習による正確な擬似ラベル生成手法を提案する。
論文 参考訳(メタデータ) (2023-07-05T12:44:52Z) - SIM: Semantic-aware Instance Mask Generation for Box-Supervised Instance
Segmentation [22.930296667684125]
本稿では,セマンティック・アウェア・インスタンス・マスク(SIM)生成パラダイムを開発することによって,新しいボックス管理型インスタンス・セグメンテーション手法を提案する。
セマンティック・アウェア・プロトタイプは,同じセマンティクスの異なるインスタンスを区別できないことを考慮し,自己補正機構を提案する。
実験結果から,提案手法が他の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-14T05:59:25Z) - Instance-specific and Model-adaptive Supervision for Semi-supervised
Semantic Segmentation [49.82432158155329]
iMAS と呼ばれる半教師付きセマンティックセグメンテーションのためのインスタンス固有およびモデル適応型監視法を提案する。
iMASは、評価された硬さに基づいて、対応する一貫性損失を測定することで、ラベルのないインスタンスから徐々に学習する。
論文 参考訳(メタデータ) (2022-11-21T10:37:28Z) - Object-Aware Self-supervised Multi-Label Learning [9.496981642855769]
マルチラベル学習のためのよりきめ細かい表現を得るために,オブジェクト指向自己スーパービジョン(OASS)法を提案する。
提案手法は,提案しない方式でCSI(Class-Specific Instances)を効率的に生成するために利用することができる。
マルチラベル分類のためのVOC2012データセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2022-05-14T10:14:08Z) - Learning to Imagine: Diversify Memory for Incremental Learning using
Unlabeled Data [69.30452751012568]
本研究では,多様な特徴を適応的に生成することで,経験を多様化する学習可能な特徴生成装置を開発する。
生成したサンプルを前例とセマンティックに整合させるために,意味的コントラスト学習を導入する。
提案手法は, 余分な推論コストを伴わず, 2つのベンチマークで最先端の手法より優れている。
論文 参考訳(メタデータ) (2022-04-19T15:15:18Z) - Learning to Detect Instance-level Salient Objects Using Complementary
Image Labels [55.049347205603304]
本報告では,本問題に対する第1の弱教師付きアプローチを提案する。
本稿では,候補対象の特定にクラス整合性情報を活用するSaliency Detection Branch,オブジェクト境界をデライン化するためにクラス整合性情報を利用するBundary Detection Branch,サブティナイズ情報を用いたCentroid Detection Branchを提案する。
論文 参考訳(メタデータ) (2021-11-19T10:15:22Z) - Approximating Instance-Dependent Noise via Instance-Confidence Embedding [87.65718705642819]
マルチクラス分類におけるラベルノイズは、学習システムの展開にとって大きな障害である。
インスタンス依存ノイズ(IDN)モデルを調査し、IDNの効率的な近似を提案し、インスタンス固有のラベル破損を捕捉する。
論文 参考訳(メタデータ) (2021-03-25T02:33:30Z) - How to trust unlabeled data? Instance Credibility Inference for Few-Shot
Learning [47.21354101796544]
本稿では,未ラベルのインスタンスを数発の視覚認識に利用するために,ICI (Instance Credibility Inference) と呼ばれる統計的アプローチを提案する。
擬似ラベル付きインスタンスの信頼性は, それらの付随パラメータの正規化経路に沿ってランク付けし, 最も信頼性の高い擬似ラベル付きインスタンスを拡張ラベル付きインスタンスとして保存する。
論文 参考訳(メタデータ) (2020-07-15T03:38:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。