LLaMEA-BO: A Large Language Model Evolutionary Algorithm for Automatically Generating Bayesian Optimization Algorithms
- URL: http://arxiv.org/abs/2505.21034v1
- Date: Tue, 27 May 2025 11:13:14 GMT
- Title: LLaMEA-BO: A Large Language Model Evolutionary Algorithm for Automatically Generating Bayesian Optimization Algorithms
- Authors: Wenhu Li, Niki van Stein, Thomas Bäck, Elena Raponi,
- Abstract summary: Large Language Models (LLMs) have opened new avenues for automating scientific discovery.<n>Our framework uses an evolution strategy to guide an LLM in generating Python code that preserves the key components of BO algorithms.<n>Despite no additional fine-tuning, the LLM-generated algorithms outperform state-of-the-art BO baselines in 19 (out of 24) BBOB functions in 5 and well to generalize to higher dimensions, and different tasks.
- Score: 0.01874930567916036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian optimization (BO) is a powerful class of algorithms for optimizing expensive black-box functions, but designing effective BO algorithms remains a manual, expertise-driven task. Recent advancements in Large Language Models (LLMs) have opened new avenues for automating scientific discovery, including the automatic design of optimization algorithms. While prior work has used LLMs within optimization loops or to generate non-BO algorithms, we tackle a new challenge: Using LLMs to automatically generate full BO algorithm code. Our framework uses an evolution strategy to guide an LLM in generating Python code that preserves the key components of BO algorithms: An initial design, a surrogate model, and an acquisition function. The LLM is prompted to produce multiple candidate algorithms, which are evaluated on the established Black-Box Optimization Benchmarking (BBOB) test suite from the COmparing Continuous Optimizers (COCO) platform. Based on their performance, top candidates are selected, combined, and mutated via controlled prompt variations, enabling iterative refinement. Despite no additional fine-tuning, the LLM-generated algorithms outperform state-of-the-art BO baselines in 19 (out of 24) BBOB functions in dimension 5 and generalize well to higher dimensions, and different tasks (from the Bayesmark framework). This work demonstrates that LLMs can serve as algorithmic co-designers, offering a new paradigm for automating BO development and accelerating the discovery of novel algorithmic combinations. The source code is provided at https://github.com/Ewendawi/LLaMEA-BO.
Related papers
- Combinatorial Optimization for All: Using LLMs to Aid Non-Experts in Improving Optimization Algorithms [0.9668407688201361]
Large Language Models (LLMs) have shown notable potential in code generation for optimization algorithms.<n>This paper examines how LLMs, rather than creating algorithms from scratch, can improve existing ones without the need for specialized expertise.
arXiv Detail & Related papers (2025-03-14T00:26:00Z) - LLaMEA: A Large Language Model Evolutionary Algorithm for Automatically Generating Metaheuristics [0.023020018305241332]
This paper introduces a novel Large Language Model Evolutionary Algorithm (LLaMEA) framework.<n>Given a set of criteria and a task definition (the search space), LLaMEA iteratively generates, mutates and selects algorithms.<n>We show how this framework can be used to generate novel black-box metaheuristic optimization algorithms automatically.
arXiv Detail & Related papers (2024-05-30T15:10:59Z) - Large Language Models As Evolution Strategies [6.873777465945062]
In this work, we investigate whether large language models (LLMs) are in principle capable of implementing evolutionary optimization algorithms.
We introduce a novel prompting strategy, consisting of least-to-most sorting of discretized population members.
We find that our setup allows the user to obtain an LLM-based evolution strategy, which we call EvoLLM', that robustly outperforms baseline algorithms.
arXiv Detail & Related papers (2024-02-28T15:02:17Z) - Reinforced In-Context Black-Box Optimization [64.25546325063272]
RIBBO is a method to reinforce-learn a BBO algorithm from offline data in an end-to-end fashion.
RIBBO employs expressive sequence models to learn the optimization histories produced by multiple behavior algorithms and tasks.
Central to our method is to augment the optimization histories with textitregret-to-go tokens, which are designed to represent the performance of an algorithm based on cumulative regret over the future part of the histories.
arXiv Detail & Related papers (2024-02-27T11:32:14Z) - Use Your INSTINCT: INSTruction optimization for LLMs usIng Neural bandits Coupled with Transformers [66.823588073584]
Large language models (LLMs) have shown remarkable instruction-following capabilities and achieved impressive performances in various applications.
Recent work has used the query-efficient Bayesian optimization (BO) algorithm to automatically optimize the instructions given to black-box LLMs.
We propose a neural bandit algorithm which replaces the GP in BO by an NN surrogate to optimize instructions for black-box LLMs.
arXiv Detail & Related papers (2023-10-02T02:01:16Z) - ALGO: Synthesizing Algorithmic Programs with LLM-Generated Oracle
Verifiers [60.6418431624873]
Large language models (LLMs) excel at implementing code from functionality descriptions but struggle with algorithmic problems.
We propose ALGO, a framework that synthesizes Algorithmic programs with LLM-Generated Oracles to guide the generation and verify their correctness.
Experiments show that when equipped with ALGO, we achieve an 8x better one-submission pass rate over the Codex model and a 2.6x better one-submission pass rate over CodeT.
arXiv Detail & Related papers (2023-05-24T00:10:15Z) - Self-adjusting optimization algorithm for solving the setunion knapsack
problem [0.3128201162068913]
The set-union knapsack problem (SUKP) is a constrained composed optimization problem.
We present two self-adjusting optimization algorithms for approximating SUKP from items and elements perspective respectively.
arXiv Detail & Related papers (2022-01-23T14:15:49Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - Stepwise Model Selection for Sequence Prediction via Deep Kernel
Learning [100.83444258562263]
We propose a novel Bayesian optimization (BO) algorithm to tackle the challenge of model selection in this setting.
In order to solve the resulting multiple black-box function optimization problem jointly and efficiently, we exploit potential correlations among black-box functions.
We are the first to formulate the problem of stepwise model selection (SMS) for sequence prediction, and to design and demonstrate an efficient joint-learning algorithm for this purpose.
arXiv Detail & Related papers (2020-01-12T09:42:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.