Uni3D-MoE: Scalable Multimodal 3D Scene Understanding via Mixture of Experts
- URL: http://arxiv.org/abs/2505.21079v1
- Date: Tue, 27 May 2025 12:03:30 GMT
- Title: Uni3D-MoE: Scalable Multimodal 3D Scene Understanding via Mixture of Experts
- Authors: Yue Zhang, Yingzhao Jian, Hehe Fan, Yi Yang, Roger Zimmermann,
- Abstract summary: We propose Uni3D-MoE, a sparse Mixture-of-Experts (MoE)-based 3D MLLM designed to enable adaptive 3D multimodal fusion.<n>Uni3D-MoE integrates a comprehensive set of 3D modalities, including multi-view RGB and depth images, bird's-eye-view (BEV) maps, point clouds, and voxel representations.<n>Our framework employs a learnable routing mechanism within the sparse MoE-based large language model, dynamically selecting appropriate experts at the token level.
- Score: 49.21162433486564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in multimodal large language models (MLLMs) have demonstrated considerable potential for comprehensive 3D scene understanding. However, existing approaches typically utilize only one or a limited subset of 3D modalities, resulting in incomplete representations of 3D scenes and reduced interpretive accuracy. Furthermore, different types of queries inherently depend on distinct modalities, indicating that uniform processing of all modality tokens may fail to effectively capture query-specific context. To address these challenges, we propose Uni3D-MoE, a sparse Mixture-of-Experts (MoE)-based 3D MLLM designed to enable adaptive 3D multimodal fusion. Specifically, Uni3D-MoE integrates a comprehensive set of 3D modalities, including multi-view RGB and depth images, bird's-eye-view (BEV) maps, point clouds, and voxel representations. At its core, our framework employs a learnable routing mechanism within the sparse MoE-based large language model, dynamically selecting appropriate experts at the token level. Each expert specializes in processing multimodal tokens based on learned modality preferences, thus facilitating flexible collaboration tailored to diverse task-specific requirements. Extensive evaluations on standard 3D scene understanding benchmarks and specialized datasets demonstrate the efficacy of Uni3D-MoE.
Related papers
- MLLM-For3D: Adapting Multimodal Large Language Model for 3D Reasoning Segmentation [87.30919771444117]
Reasoning segmentation aims to segment target objects in complex scenes based on human intent and spatial reasoning.<n>Recent multimodal large language models (MLLMs) have demonstrated impressive 2D image reasoning segmentation.<n>We introduce MLLM-For3D, a framework that transfers knowledge from 2D MLLMs to 3D scene understanding.
arXiv Detail & Related papers (2025-03-23T16:40:20Z) - CrossOver: 3D Scene Cross-Modal Alignment [78.3057713547313]
CrossOver is a novel framework for cross-modal 3D scene understanding.<n>It learns a unified, modality-agnostic embedding space for scenes by aligning modalities.<n>It supports robust scene retrieval and object localization, even with missing modalities.
arXiv Detail & Related papers (2025-02-20T20:05:30Z) - CL3DOR: Contrastive Learning for 3D Large Multimodal Models via Odds Ratio on High-Resolution Point Clouds [1.9643285694999641]
We propose Contrastive Learning for 3D large multimodal models via Odds ratio on high-Resolution point clouds.<n> CL3DOR achieves state-of-the-art performance in 3D scene understanding and reasoning benchmarks.
arXiv Detail & Related papers (2025-01-07T15:42:32Z) - SM3Det: A Unified Model for Multi-Modal Remote Sensing Object Detection [73.49799596304418]
This paper introduces a new task called Multi-Modal datasets and Multi-Task Object Detection (M2Det) for remote sensing.<n>It is designed to accurately detect horizontal or oriented objects from any sensor modality.<n>This task poses challenges due to 1) the trade-offs involved in managing multi-modal modelling and 2) the complexities of multi-task optimization.
arXiv Detail & Related papers (2024-12-30T02:47:51Z) - Video-3D LLM: Learning Position-Aware Video Representation for 3D Scene Understanding [19.382210260928776]
Video-3D LLM treats 3D scenes as dynamic videos and incorporates 3D position encoding into these representations.<n>Our model achieves state-of-the-art performance on several 3D scene understanding benchmarks.
arXiv Detail & Related papers (2024-11-30T14:28:53Z) - Multi-modal Relation Distillation for Unified 3D Representation Learning [30.942281325891226]
Multi-modal Relation Distillation (MRD) is a tri-modal pre-training framework designed to distill reputable large Vision-Language Models (VLM) into 3D backbones.
MRD aims to capture both intra-relations within each modality as well as cross-relations between different modalities and produce more discriminative 3D shape representations.
arXiv Detail & Related papers (2024-07-19T03:43:48Z) - Dense Multimodal Alignment for Open-Vocabulary 3D Scene Understanding [39.55810156545949]
We propose a Multimodal Alignment (DMA) framework to densely co-embed different modalities into a common space.
Our DMA method produces highly competitive open-vocabulary segmentation performance on various indoor and outdoor tasks.
arXiv Detail & Related papers (2024-07-13T05:39:17Z) - MMScan: A Multi-Modal 3D Scene Dataset with Hierarchical Grounded Language Annotations [55.022519020409405]
This paper builds the first largest ever multi-modal 3D scene dataset and benchmark with hierarchical grounded language annotations, MMScan.<n>The resulting multi-modal 3D dataset encompasses 1.4M meta-annotated captions on 109k objects and 7.7k regions as well as over 3.04M diverse samples for 3D visual grounding and question-answering benchmarks.
arXiv Detail & Related papers (2024-06-13T17:59:30Z) - M3DBench: Let's Instruct Large Models with Multi-modal 3D Prompts [30.571811801090224]
We introduce a comprehensive 3D instructionfollowing dataset called M3DBench.
It supports general multimodal instructions interleaved with text, images, 3D objects, and other visual prompts.
It unifies diverse 3D tasks at both region and scene levels, covering a variety of fundamental abilities in real-world 3D environments.
arXiv Detail & Related papers (2023-12-17T16:53:30Z) - UniM$^2$AE: Multi-modal Masked Autoencoders with Unified 3D Representation for 3D Perception in Autonomous Driving [47.590099762244535]
Masked Autoencoders (MAE) play a pivotal role in learning potent representations, delivering outstanding results across various 3D perception tasks.
This research delves into multi-modal Masked Autoencoders tailored for a unified representation space in autonomous driving.
To intricately marry the semantics inherent in images with the geometric intricacies of LiDAR point clouds, we propose UniM$2$AE.
arXiv Detail & Related papers (2023-08-21T02:13:40Z) - Beyond First Impressions: Integrating Joint Multi-modal Cues for
Comprehensive 3D Representation [72.94143731623117]
Existing methods simply align 3D representations with single-view 2D images and coarse-grained parent category text.
Insufficient synergy neglects the idea that a robust 3D representation should align with the joint vision-language space.
We propose a multi-view joint modality modeling approach, termed JM3D, to obtain a unified representation for point cloud, text, and image.
arXiv Detail & Related papers (2023-08-06T01:11:40Z) - ULIP-2: Towards Scalable Multimodal Pre-training for 3D Understanding [96.95120198412395]
We introduce tri-modal pre-training framework that automatically generates holistic language descriptions for 3D shapes.
It only needs 3D data as input, eliminating the need for any manual 3D annotations, and is therefore scalable to large datasets.
We conduct experiments on two large-scale 3D datasets, NN and ShapeNet, and augment them with tri-modal datasets of 3D point clouds, captioning, and language for training.
Experiments show that NN-2 demonstrates substantial benefits in three downstream tasks: zero-shot 3D classification, standard 3D classification with finetuning, and 3D (3D
arXiv Detail & Related papers (2023-05-14T23:14:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.