Multi-modal Relation Distillation for Unified 3D Representation Learning
- URL: http://arxiv.org/abs/2407.14007v2
- Date: Wed, 18 Sep 2024 06:39:50 GMT
- Title: Multi-modal Relation Distillation for Unified 3D Representation Learning
- Authors: Huiqun Wang, Yiping Bao, Panwang Pan, Zeming Li, Xiao Liu, Ruijie Yang, Di Huang,
- Abstract summary: Multi-modal Relation Distillation (MRD) is a tri-modal pre-training framework designed to distill reputable large Vision-Language Models (VLM) into 3D backbones.
MRD aims to capture both intra-relations within each modality as well as cross-relations between different modalities and produce more discriminative 3D shape representations.
- Score: 30.942281325891226
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in multi-modal pre-training for 3D point clouds have demonstrated promising results by aligning heterogeneous features across 3D shapes and their corresponding 2D images and language descriptions. However, current straightforward solutions often overlook intricate structural relations among samples, potentially limiting the full capabilities of multi-modal learning. To address this issue, we introduce Multi-modal Relation Distillation (MRD), a tri-modal pre-training framework, which is designed to effectively distill reputable large Vision-Language Models (VLM) into 3D backbones. MRD aims to capture both intra-relations within each modality as well as cross-relations between different modalities and produce more discriminative 3D shape representations. Notably, MRD achieves significant improvements in downstream zero-shot classification tasks and cross-modality retrieval tasks, delivering new state-of-the-art performance.
Related papers
- DiHuR: Diffusion-Guided Generalizable Human Reconstruction [51.31232435994026]
We introduce DiHuR, a Diffusion-guided model for generalizable Human 3D Reconstruction and view synthesis from sparse, minimally overlapping images.
Our method integrates two key priors in a coherent manner: the prior from generalizable feed-forward models and the 2D diffusion prior, and it requires only multi-view image training, without 3D supervision.
arXiv Detail & Related papers (2024-11-16T03:52:23Z) - Cross-D Conv: Cross-Dimensional Transferable Knowledge Base via Fourier Shifting Operation [3.69758875412828]
Cross-D Conv operation bridges the dimensional gap by learning the phase shifting in the Fourier domain.
Our method enables seamless weight transfer between 2D and 3D convolution operations, effectively facilitating cross-dimensional learning.
arXiv Detail & Related papers (2024-11-02T13:03:44Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - TAMM: TriAdapter Multi-Modal Learning for 3D Shape Understanding [28.112402580426174]
TriAdapter Multi-Modal Learning (TAMM) is a novel two-stage learning approach based on three synergistic adapters.
TAMM consistently enhances 3D representations for a wide range of 3D encoder architectures, pre-training datasets, and downstream tasks.
arXiv Detail & Related papers (2024-02-28T17:18:38Z) - Beyond First Impressions: Integrating Joint Multi-modal Cues for
Comprehensive 3D Representation [72.94143731623117]
Existing methods simply align 3D representations with single-view 2D images and coarse-grained parent category text.
Insufficient synergy neglects the idea that a robust 3D representation should align with the joint vision-language space.
We propose a multi-view joint modality modeling approach, termed JM3D, to obtain a unified representation for point cloud, text, and image.
arXiv Detail & Related papers (2023-08-06T01:11:40Z) - MSeg3D: Multi-modal 3D Semantic Segmentation for Autonomous Driving [15.36416000750147]
We propose a multi-modal 3D semantic segmentation model (MSeg3D) with joint intra-modal feature extraction and inter-modal feature fusion.
MSeg3D still shows robustness and improves the LiDAR-only baseline.
arXiv Detail & Related papers (2023-03-15T13:13:03Z) - Progressive Multi-view Human Mesh Recovery with Self-Supervision [68.60019434498703]
Existing solutions typically suffer from poor generalization performance to new settings.
We propose a novel simulation-based training pipeline for multi-view human mesh recovery.
arXiv Detail & Related papers (2022-12-10T06:28:29Z) - Efficient Multimodal Transformer with Dual-Level Feature Restoration for
Robust Multimodal Sentiment Analysis [47.29528724322795]
Multimodal Sentiment Analysis (MSA) has attracted increasing attention recently.
Despite significant progress, there are still two major challenges on the way towards robust MSA.
We propose a generic and unified framework to address them, named Efficient Multimodal Transformer with Dual-Level Feature Restoration (EMT-DLFR)
arXiv Detail & Related papers (2022-08-16T08:02:30Z) - Multimodal Semi-Supervised Learning for 3D Objects [19.409295848915388]
This paper explores how the coherence of different modelities of 3D data can be used to improve data efficiency for both 3D classification and retrieval tasks.
We propose a novel multimodal semi-supervised learning framework by introducing instance-level consistency constraint and a novel multimodal contrastive prototype (M2CP) loss.
Our proposed framework significantly outperforms all the state-of-the-art counterparts for both classification and retrieval tasks by a large margin on the modelNet10 and ModelNet40 datasets.
arXiv Detail & Related papers (2021-10-22T05:33:16Z) - Searching Multi-Rate and Multi-Modal Temporal Enhanced Networks for
Gesture Recognition [89.0152015268929]
We propose the first neural architecture search (NAS)-based method for RGB-D gesture recognition.
The proposed method includes two key components: 1) enhanced temporal representation via the 3D Central Difference Convolution (3D-CDC) family, and optimized backbones for multi-modal-rate branches and lateral connections.
The resultant multi-rate network provides a new perspective to understand the relationship between RGB and depth modalities and their temporal dynamics.
arXiv Detail & Related papers (2020-08-21T10:45:09Z) - Unsupervised Cross-Modal Alignment for Multi-Person 3D Pose Estimation [52.94078950641959]
We present a deployment friendly, fast bottom-up framework for multi-person 3D human pose estimation.
We adopt a novel neural representation of multi-person 3D pose which unifies the position of person instances with their corresponding 3D pose representation.
We propose a practical deployment paradigm where paired 2D or 3D pose annotations are unavailable.
arXiv Detail & Related papers (2020-08-04T07:54:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.