論文の概要: Addressing Data Quality Decompensation in Federated Learning via Dynamic Client Selection
- arxiv url: http://arxiv.org/abs/2505.21219v1
- Date: Tue, 27 May 2025 14:06:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-28 17:05:58.702095
- Title: Addressing Data Quality Decompensation in Federated Learning via Dynamic Client Selection
- Title(参考訳): 動的クライアント選択によるフェデレーション学習におけるデータ品質補償の対応
- Authors: Qinjun Fei, Nuria Rodríguez-Barroso, María Victoria Luzón, Zhongliang Zhang, Francisco Herrera,
- Abstract要約: Shapley-Bid Reputation Optimated Federated Learning (SBRO-FL)は、動的入札、評判モデリング、コスト認識の選択を統合する統合フレームワークである。
予測理論にインスパイアされた評価システムは、矛盾を罰しながら歴史的なパフォーマンスを捉えている。
FashionMNIST, EMNIST, CIFAR-10, SVHNデータセットの実験により、SBRO-FLは対向的および低障壁干渉シナリオにおいても精度、収束速度、堅牢性を改善することが示された。
- 参考スコア(独自算出の注目度): 7.603415982653868
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In cross-silo Federated Learning (FL), client selection is critical to ensure high model performance, yet it remains challenging due to data quality decompensation, budget constraints, and incentive compatibility. As training progresses, these factors exacerbate client heterogeneity and degrade global performance. Most existing approaches treat these challenges in isolation, making jointly optimizing multiple factors difficult. To address this, we propose Shapley-Bid Reputation Optimized Federated Learning (SBRO-FL), a unified framework integrating dynamic bidding, reputation modeling, and cost-aware selection. Clients submit bids based on their perceived data quality, and their contributions are evaluated using Shapley values to quantify their marginal impact on the global model. A reputation system, inspired by prospect theory, captures historical performance while penalizing inconsistency. The client selection problem is formulated as a 0-1 integer program that maximizes reputation-weighted utility under budget constraints. Experiments on FashionMNIST, EMNIST, CIFAR-10, and SVHN datasets show that SBRO-FL improves accuracy, convergence speed, and robustness, even in adversarial and low-bid interference scenarios. Our results highlight the importance of balancing data reliability, incentive compatibility, and cost efficiency to enable scalable and trustworthy FL deployments.
- Abstract(参考訳): クロスサイロのフェデレートラーニング(FL)では、高いモデルパフォーマンスを保証するためにクライアントの選択が重要になりますが、データ品質の低下、予算の制約、インセンティブの互換性のため、依然として難しいです。
トレーニングが進むにつれて、これらの要因はクライアントの不均一性を悪化させ、グローバルパフォーマンスを低下させます。
既存のアプローチのほとんどは、これらの課題を分離して扱い、複数の要因を共同で最適化することを困難にしている。
そこで我々は,動的入札,評価モデリング,費用対効果を考慮した統合フレームワークであるShapley-Bid Reputation Optimized Federated Learning (SBRO-FL)を提案する。
クライアントは認識したデータ品質に基づいて入札を提出し、そのコントリビューションはShapley値を使用して評価され、グローバルモデルに対する限界の影響を定量化する。
予測理論にインスパイアされた評価システムは、矛盾を罰しながら歴史的なパフォーマンスを捉えている。
クライアント選択問題は、予算制約下での評価重み付きユーティリティを最大化する0-1整数プログラムとして定式化される。
FashionMNIST, EMNIST, CIFAR-10, SVHNデータセットの実験により、SBRO-FLは対向的および低障壁干渉シナリオにおいても精度、収束速度、堅牢性を改善することが示された。
我々の結果は、スケーラブルで信頼性の高いFLデプロイメントを実現するために、データの信頼性、インセンティブの互換性、コスト効率のバランスをとることの重要性を強調します。
関連論文リスト
- Robust Federated Learning with Confidence-Weighted Filtering and GAN-Based Completion under Noisy and Incomplete Data [0.0]
フェデレートラーニング(FL)は、分散化されたクライアントデータセット間のデータのプライバシを維持しながら、協調的なモデルトレーニングのための効果的なソリューションを提供する。
本研究では,ノイズやクラス不均衡,ラベルの欠落など,データ品質問題に体系的に対処するフェデレート学習手法を提案する。
以上の結果から,この手法はデータ品質の課題を効果的に軽減し,堅牢でスケーラブルでプライバシに適合したソリューションを提供することが示唆された。
論文 参考訳(メタデータ) (2025-05-14T18:49:18Z) - HFedCKD: Toward Robust Heterogeneous Federated Learning via Data-free Knowledge Distillation and Two-way Contrast [10.652998357266934]
データフリーな知識蒸留と双方向コントラスト(HFedCKD)に基づくヘテロジニアスフェデレーション方式を提案する。
HFedCKDは、データフリーな知識蒸留における低い参加率による知識オフセットを効果的に軽減し、モデルの性能と安定性を向上させる。
我々は画像とIoTデータセットに関する広範な実験を行い、提案したHFedCKDフレームワークの一般化と堅牢性を包括的に評価し、検証する。
論文 参考訳(メタデータ) (2025-03-09T08:32:57Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning(FL)は、クライアントが独自のデータをプライベートに保ちながら、協調的にモデルをトレーニングする分散学習パラダイムである。
本稿では,新しいフェデレーション最適化手法のクラスであるフェデレーション中心適応最適化を提案する。
論文 参考訳(メタデータ) (2025-01-17T04:00:50Z) - Incentive-Compatible Federated Learning with Stackelberg Game Modeling [11.863770989724959]
適応ガンマベースのStackelbergゲームに基づく新しいフェデレートラーニングフレームワークであるFLammaを紹介する。
当社のアプローチでは、サーバがリーダとして機能し、動的に崩壊要因を調整し、クライアントはフォロワーとして、その効用を最大化するローカルエポックの数を最適に選択します。
時間が経つにつれて、サーバはクライアントの影響を徐々にバランスさせ、最初は高いコントリビューションのクライアントに報酬を与え、その影響を徐々にレベルアップさせ、システムをStackelberg Equilibriumに誘導する。
論文 参考訳(メタデータ) (2025-01-05T21:04:41Z) - Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
推薦システム(RSRS)は、ユーザの好みとプライバシの両方に対処する。
通信効率を向上させるために,非一様勾配勾配勾配を取り入れた新しい手法を提案する。
RFRecFの強靭性は、多様なベースラインに比べて優れている。
論文 参考訳(メタデータ) (2024-11-03T12:10:20Z) - IMFL-AIGC: Incentive Mechanism Design for Federated Learning Empowered by Artificial Intelligence Generated Content [15.620004060097155]
フェデレートラーニング(FL)は、クライアントがローカルデータをアップロードすることなく、共有グローバルモデルを協調的にトレーニングできる、有望なパラダイムとして登場した。
顧客参加を促すため,データ品質を考慮したインセンティブ機構を提案する。
提案したメカニズムは,トレーニングの精度が高く,実世界のデータセットによるサーバコストの最大53.34%を削減できる。
論文 参考訳(メタデータ) (2024-06-12T07:47:22Z) - FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
フェデレートラーニング(FL)は、分散クライアント間の機械学習モデルの協調トレーニングにおいて、顕著なアプローチとして登場した。
我々は,この課題に対処するために設計された,革新的なクライアント適応アルゴリズムであるFedCAdaを紹介する。
我々はFedCAdaが適応性、収束性、安定性、全体的な性能の点で最先端の手法より優れていることを実証する。
論文 参考訳(メタデータ) (2024-05-20T06:12:33Z) - Price of Stability in Quality-Aware Federated Learning [11.59995920901346]
Federated Learning(FL)は、クライアントがローカルデータを交換することなく、共有グローバルモデルをトレーニングできる分散機械学習スキームである。
我々は,クライアントのインタラクションを新しいラベル記述ゲームとしてモデル化し,その均衡を特徴づける。
我々は、平衡結果が常に社会的に最適な解よりも低いグローバルモデル精度をもたらすことを証明している。
論文 参考訳(メタデータ) (2023-10-13T00:25:21Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
本研究では,ランダムに選択したクライアントからのグループデータのクラス不均衡が,性能の大幅な低下につながることを示す。
我々のキーとなる観測に基づいて、我々は効率的なクライアントサンプリング機構、すなわちフェデレートクラスバランスサンプリング(Fed-CBS)を設計する。
特に、クラス不均衡の尺度を提案し、その後、同型暗号化を用いてプライバシー保護方式でこの尺度を導出する。
論文 参考訳(メタデータ) (2022-09-30T05:42:56Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
フェデレートラーニング(FL)は、グローバル機械学習モデルをトレーニングするためのソリューションを提供する。
FLは、クライアントデータの分散が非IIDであるときに性能劣化に悩まされる。
本稿では,この劣化に対処するために,新しい適応トレーニングアルゴリズムであるtextttAdaFL$を提案する。
論文 参考訳(メタデータ) (2021-08-12T14:18:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。