Plenodium: UnderWater 3D Scene Reconstruction with Plenoptic Medium Representation
- URL: http://arxiv.org/abs/2505.21258v1
- Date: Tue, 27 May 2025 14:37:58 GMT
- Title: Plenodium: UnderWater 3D Scene Reconstruction with Plenoptic Medium Representation
- Authors: Changguanng Wu, Jiangxin Dong, Chengjian Li, Jinhui Tang,
- Abstract summary: We present Plenodium, a 3D representation framework capable of jointly modeling both objects and participating media.<n>In contrast to existing medium representations that rely solely on view-dependent modeling, our novel plenoptic medium representation incorporates both directional and positional information.<n>Experiments on real-world underwater datasets demonstrate that our method achieves significant improvements in 3D reconstruction.
- Score: 31.47797579690604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present Plenodium (plenoptic medium), an effective and efficient 3D representation framework capable of jointly modeling both objects and participating media. In contrast to existing medium representations that rely solely on view-dependent modeling, our novel plenoptic medium representation incorporates both directional and positional information through spherical harmonics encoding, enabling highly accurate underwater scene reconstruction. To address the initialization challenge in degraded underwater environments, we propose the pseudo-depth Gaussian complementation to augment COLMAP-derived point clouds with robust depth priors. In addition, a depth ranking regularized loss is developed to optimize the geometry of the scene and improve the ordinal consistency of the depth maps. Extensive experiments on real-world underwater datasets demonstrate that our method achieves significant improvements in 3D reconstruction. Furthermore, we conduct a simulated dataset with ground truth and the controllable scattering medium to demonstrate the restoration capability of our method in underwater scenarios. Our code and dataset are available at https://plenodium.github.io/.
Related papers
- Propagating Sparse Depth via Depth Foundation Model for Out-of-Distribution Depth Completion [33.854696587141355]
We propose a novel depth completion framework that leverages depth foundation models to attain remarkable robustness without large-scale training.<n>Specifically, we leverage a depth foundation model to extract environmental cues, including structural and semantic context, from RGB images to guide the propagation of sparse depth information into missing regions.<n>Our framework performs remarkably well in the OOD scenarios and outperforms existing state-of-the-art depth completion methods.
arXiv Detail & Related papers (2025-08-07T02:38:24Z) - DepR: Depth Guided Single-view Scene Reconstruction with Instance-level Diffusion [59.25479674775212]
DepR is a depth-guided single-view scene reconstruction framework.<n>It generates individual objects and composes them into a coherent 3D layout.<n>It achieves state-of-the-art performance despite being trained on limited synthetic data.
arXiv Detail & Related papers (2025-07-30T16:40:46Z) - Underwater Monocular Metric Depth Estimation: Real-World Benchmarks and Synthetic Fine-Tuning with Vision Foundation Models [0.0]
We present a benchmark of zero-shot and fine-tuned monocular metric depth estimation models on real-world underwater datasets.<n>Our results show that large-scale models trained on terrestrial data (real or synthetic) are effective in in-air settings, but perform poorly underwater.<n>This study presents a detailed evaluation and visualization of monocular metric depth estimation in underwater scenes.
arXiv Detail & Related papers (2025-07-02T21:06:39Z) - 3D-UIR: 3D Gaussian for Underwater 3D Scene Reconstruction via Physics-Based Appearance-Medium Decouplin [30.985414238960466]
We propose a physics-based framework that disentangles object appearance from water medium effects.<n>Our approach achieves both high-quality novel view synthesis and physically accurate scene restoration.
arXiv Detail & Related papers (2025-05-27T14:19:30Z) - RUSplatting: Robust 3D Gaussian Splatting for Sparse-View Underwater Scene Reconstruction [15.366193984872671]
This paper presents an enhanced Gaussian Splatting-based framework that improves both the visual quality and accuracy of deep underwater rendering.<n>We propose decoupled learning for RGB channels, guided by the physics of underwater attenuation, to enable more accurate colour restoration.<n>We also introduce a new loss function aimed at reducing noise while preserving edges, which is essential for deep-sea content.
arXiv Detail & Related papers (2025-05-21T16:42:15Z) - Decompositional Neural Scene Reconstruction with Generative Diffusion Prior [64.71091831762214]
Decompositional reconstruction of 3D scenes, with complete shapes and detailed texture, is intriguing for downstream applications.<n>Recent approaches incorporate semantic or geometric regularization to address this issue, but they suffer significant degradation in underconstrained areas.<n>We propose DP-Recon, which employs diffusion priors in the form of Score Distillation Sampling (SDS) to optimize the neural representation of each individual object under novel views.
arXiv Detail & Related papers (2025-03-19T02:11:31Z) - GEOcc: Geometrically Enhanced 3D Occupancy Network with Implicit-Explicit Depth Fusion and Contextual Self-Supervision [49.839374549646884]
This paper presents GEOcc, a Geometric-Enhanced Occupancy network tailored for vision-only surround-view perception.<n>Our approach achieves State-Of-The-Art performance on the Occ3D-nuScenes dataset with the least image resolution needed and the most weightless image backbone.
arXiv Detail & Related papers (2024-05-17T07:31:20Z) - Q-SLAM: Quadric Representations for Monocular SLAM [85.82697759049388]
We reimagine volumetric representations through the lens of quadrics.
We use quadric assumption to rectify noisy depth estimations from RGB inputs.
We introduce a novel quadric-decomposed transformer to aggregate information across quadrics.
arXiv Detail & Related papers (2024-03-12T23:27:30Z) - Metrically Scaled Monocular Depth Estimation through Sparse Priors for
Underwater Robots [0.0]
We formulate a deep learning model that fuses sparse depth measurements from triangulated features to improve the depth predictions.
The network is trained in a supervised fashion on the forward-looking underwater dataset, FLSea.
The method achieves real-time performance, running at 160 FPS on a laptop GPU and 7 FPS on a single CPU core.
arXiv Detail & Related papers (2023-10-25T16:32:31Z) - Depth-conditioned Dynamic Message Propagation for Monocular 3D Object
Detection [86.25022248968908]
We learn context- and depth-aware feature representation to solve the problem of monocular 3D object detection.
We show state-of-the-art results among the monocular-based approaches on the KITTI benchmark dataset.
arXiv Detail & Related papers (2021-03-30T16:20:24Z) - Depth Completion using Piecewise Planar Model [94.0808155168311]
A depth map can be represented by a set of learned bases and can be efficiently solved in a closed form solution.
However, one issue with this method is that it may create artifacts when colour boundaries are inconsistent with depth boundaries.
We enforce a more strict model in depth recovery: a piece-wise planar model.
arXiv Detail & Related papers (2020-12-06T07:11:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.