論文の概要: DiMoSR: Feature Modulation via Multi-Branch Dilated Convolutions for Efficient Image Super-Resolution
- arxiv url: http://arxiv.org/abs/2505.21262v1
- Date: Tue, 27 May 2025 14:40:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-28 17:05:58.72414
- Title: DiMoSR: Feature Modulation via Multi-Branch Dilated Convolutions for Efficient Image Super-Resolution
- Title(参考訳): DiMoSR: 効率的な画像超解像のためのマルチブランチ拡張畳み込みによる特徴変調
- Authors: M. Akin Yilmaz, Ahmet Bilican, A. Murat Tekalp,
- Abstract要約: 本稿では、軽量SISRネットワークにおける注目を補うために、変調による特徴表現を強化する新しいアーキテクチャであるDiMoSRを紹介する。
実験により、DiMoSRは様々なベンチマークデータセットで最先端の軽量メソッドよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 7.714092783675679
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Balancing reconstruction quality versus model efficiency remains a critical challenge in lightweight single image super-resolution (SISR). Despite the prevalence of attention mechanisms in recent state-of-the-art SISR approaches that primarily emphasize or suppress feature maps, alternative architectural paradigms warrant further exploration. This paper introduces DiMoSR (Dilated Modulation Super-Resolution), a novel architecture that enhances feature representation through modulation to complement attention in lightweight SISR networks. The proposed approach leverages multi-branch dilated convolutions to capture rich contextual information over a wider receptive field while maintaining computational efficiency. Experimental results demonstrate that DiMoSR outperforms state-of-the-art lightweight methods across diverse benchmark datasets, achieving superior PSNR and SSIM metrics with comparable or reduced computational complexity. Through comprehensive ablation studies, this work not only validates the effectiveness of DiMoSR but also provides critical insights into the interplay between attention mechanisms and feature modulation to guide future research in efficient network design. The code and model weights to reproduce our results are available at: https://github.com/makinyilmaz/DiMoSR
- Abstract(参考訳): 再構成品質とモデル効率のバランスをとることは、軽量単一画像超解像(SISR)において重要な課題である。
最近の最先端のSISRアプローチでは、特徴写像を主に強調または抑制する注意機構が普及しているにもかかわらず、代替的なアーキテクチャパラダイムはさらなる探索を保証している。
本稿では、軽量SISRネットワークにおける注目を補うために変調による特徴表現を強化する新しいアーキテクチャであるDiMoSR(Dilated Modulation Super-Resolution)を紹介する。
提案手法はマルチブランチ拡張畳み込みを利用して、より広い受容領域上でリッチな文脈情報を捕捉し、計算効率を維持できる。
実験結果から、DiMoSRは様々なベンチマークデータセットにまたがって最先端の軽量な手法よりも優れており、PSNRやSSIMの指標に匹敵する計算量や計算量の削減を実現している。
包括的アブレーション研究を通じて、この研究はDiMoSRの有効性を検証するだけでなく、注意機構と特徴変調の相互作用に関する重要な洞察を与え、効率的なネットワーク設計における将来の研究を導く。
結果の再現のためのコードとモデルの重み付けは、https://github.com/makinyilmaz/DiMoSRで利用可能です。
関連論文リスト
- Efficient Single Image Super-Resolution with Entropy Attention and Receptive Field Augmentation [34.50541063621832]
本稿では,新しいエントロピーアテンション(EA)とシフトする大きなカーネルアテンション(SLKA)からなる,効率的な単一画像超解像(SISR)モデルを提案する。
EAはガウス分布で条件付けられた中間特徴のエントロピーを増大させ、その後の推論に対してより情報的な入力を提供する。
SLKAは、チャネルシフトの助けを借りてSRモデルの受容領域を拡張し、階層的特徴の多様性を高めることを好む。
論文 参考訳(メタデータ) (2024-08-08T02:03:10Z) - DVMSR: Distillated Vision Mamba for Efficient Super-Resolution [7.551130027327461]
本研究では,ビジョン・マンバと蒸留戦略を組み込んだ新しい軽量画像SRネットワークであるDVMSRを提案する。
提案したDVMSRは,モデルパラメータの観点から,最先端の効率的なSR手法より優れている。
論文 参考訳(メタデータ) (2024-05-05T17:34:38Z) - Multi-Depth Branch Network for Efficient Image Super-Resolution [12.042706918188566]
超解像(SR)における長年の課題は、低解像(LR)の高頻度細部を効率的に拡張する方法である。
MDBM(Multi-Depth Branch Module)を特徴とする非対称SRアーキテクチャを提案する。
MDBMには異なる深さの枝があり、高い周波数と低周波の情報を同時に、効率的に捉えるように設計されている。
論文 参考訳(メタデータ) (2023-09-29T15:46:25Z) - RBSR: Efficient and Flexible Recurrent Network for Burst
Super-Resolution [57.98314517861539]
バースト超解像(BurstSR)は、高解像度(HR)画像を低解像度(LR)画像と雑音画像から再構成することを目的としている。
本稿では,効率よくフレキシブルなリカレントネットワークでフレーム単位のキューを融合させることを提案する。
論文 参考訳(メタデータ) (2023-06-30T12:14:13Z) - Learning Detail-Structure Alternative Optimization for Blind
Super-Resolution [69.11604249813304]
そこで我々は,ブラインドSRに先立ってカーネルを曖昧にすることなく,再帰的な詳細構造代替最適化を実現する,有効かつカーネルフリーなネットワークDSSRを提案する。
DSSRでは、細部構造変調モジュール(DSMM)が構築され、画像の詳細と構造の相互作用と協調を利用する。
本手法は既存の手法に対して最先端の手法を実現する。
論文 参考訳(メタデータ) (2022-12-03T14:44:17Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
トランスフォーマーに基づく手法は、単一画像超解像(SISR)タスクにおいて顕著な性能を示した。
動的に特徴を抽出するために文脈情報を組み込む必要がある変換器は無視される。
我々は,CNNとTransformerを混合したCTブロックのカスケードで構成される,軽量なクロスレセプティブ・フォーカスド・推論・ネットワーク(CFIN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T16:32:29Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
エイリアスの影響を抑制するために階層画像超解像ネットワーク(HSRNet)を提案する。
HSRNetは、他の作品よりも定量的かつ視覚的なパフォーマンスを向上し、エイリアスをより効果的に再送信する。
論文 参考訳(メタデータ) (2022-06-07T14:55:32Z) - Accurate and Lightweight Image Super-Resolution with Model-Guided Deep
Unfolding Network [63.69237156340457]
我々は、モデル誘導深部展開ネットワーク(MoG-DUN)と呼ばれるSISRに対する説明可能なアプローチを提示し、提唱する。
MoG-DUNは正確(エイリアスを少なくする)、計算効率(モデルパラメータを減らした)、多用途(多重劣化を処理できる)である。
RCAN, SRDNF, SRFBNを含む既存の最先端画像手法に対するMoG-DUN手法の優位性は、いくつかの一般的なデータセットと様々な劣化シナリオに関する広範な実験によって実証されている。
論文 参考訳(メタデータ) (2020-09-14T08:23:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。