論文の概要: Supervised and self-supervised land-cover segmentation & classification of the Biesbosch wetlands
- arxiv url: http://arxiv.org/abs/2505.21269v1
- Date: Tue, 27 May 2025 14:42:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-28 17:05:58.726371
- Title: Supervised and self-supervised land-cover segmentation & classification of the Biesbosch wetlands
- Title(参考訳): ビエボッシュ湿原の土地被覆区分と分類
- Authors: Eva Gmelich Meijling, Roberto Del Prete, Arnoud Visser,
- Abstract要約: 本研究では,教師付き学習と自己指導型学習を併用した湿地土地被覆区分と分類手法を提案する。
オランダの6つの湿地帯におけるSentinel-2画像のスクラッチからU-Netモデルをトレーニングし、ベースラインモデルの精度は85.26%に達した。
ラベル付きデータの可用性の制限に対処して、オートエンコーダでSSLを事前トレーニングすることで、特に高解像度画像において精度が向上することを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate wetland land-cover classification is essential for environmental monitoring, biodiversity assessment, and sustainable ecosystem management. However, the scarcity of annotated data, especially for high-resolution satellite imagery, poses a significant challenge for supervised learning approaches. To tackle this issue, this study presents a methodology for wetland land-cover segmentation and classification that adopts both supervised and self-supervised learning (SSL). We train a U-Net model from scratch on Sentinel-2 imagery across six wetland regions in the Netherlands, achieving a baseline model accuracy of 85.26%. Addressing the limited availability of labeled data, the results show that SSL pretraining with an autoencoder can improve accuracy, especially for the high-resolution imagery where it is more difficult to obtain labeled data, reaching an accuracy of 88.23%. Furthermore, we introduce a framework to scale manually annotated high-resolution labels to medium-resolution inputs. While the quantitative performance between resolutions is comparable, high-resolution imagery provides significantly sharper segmentation boundaries and finer spatial detail. As part of this work, we also contribute a curated Sentinel-2 dataset with Dynamic World labels, tailored for wetland classification tasks and made publicly available.
- Abstract(参考訳): 正確な湿地被覆分類は, 環境モニタリング, 生物多様性評価, 持続可能な生態系管理に不可欠である。
しかし、特に高解像度衛星画像における注釈付きデータの不足は、教師あり学習のアプローチにおいて重要な課題となっている。
この問題に対処するために,本研究では,教師付き学習と自己教師型学習を併用した湿地土地被覆区分と分類手法を提案する。
オランダの6つの湿地帯におけるSentinel-2画像のスクラッチからU-Netモデルをトレーニングし、ベースラインモデルの精度は85.26%に達した。
ラベル付きデータの可用性が制限されていることから、特にラベル付きデータの取得が困難で精度88.23%に達する高解像度画像において、自動エンコーダによるSSL事前トレーニングが精度を向上させることが示されている。
さらに,手動で注釈付き高分解能ラベルを中分解能入力に拡張するフレームワークを導入する。
解像度間の定量的性能は同等であるが、高解像度画像はよりシャープなセグメンテーション境界とより微細な空間ディテールを提供する。
この作業の一環として、私たちは、湿地分類タスクに適したDynamic Worldラベル付きSentinel-2データセットのキュレーションも行っています。
関連論文リスト
- Weakly Supervised Framework Considering Multi-temporal Information for Large-scale Cropland Mapping with Satellite Imagery [11.157693752084214]
本研究では,大規模農地マッピングのための多時期情報を考慮した弱教師付き枠組みを提案する。
我々は,グローバルランドカバー(GLC)製品間の整合性に応じて高品質なラベルを抽出し,教師付き学習信号を構築する。
提案手法は大規模農地マッピングにおいて,3つの研究領域にまたがる適応性について実験的に検証されている。
論文 参考訳(メタデータ) (2024-11-27T16:11:52Z) - Global High Categorical Resolution Land Cover Mapping via Weak Supervision [19.52604717907002]
我々は、弱教師付きドメイン適応(WSDA)のために、完全ラベル付きソースドメインと弱ラベル付きターゲットドメインを組み合わせることを提案する。
粗いラベルと粗いラベルを使用することで、精密かつ詳細な土地被覆アノテーションに必要な労力を大幅に軽減できるため、これは有益である。
我々は,PlanetScope,Gaofen-1,Sentinel-2の衛星画像を用いて,世界中の10都市を対象とした高分類分解能土地被覆マッピングを行った。
論文 参考訳(メタデータ) (2024-06-02T23:18:12Z) - Biological Valuation Map of Flanders: A Sentinel-2 Imagery Analysis [12.025312586542318]
我々は、センチネル2衛星画像と組み合わせたフランダースの高密度なラベル付き地上真理マップを提示する。
提案手法は,地形図のレイアウトである「Kaartbladversnijdingen」と,詳細なセマンティックセグメンテーションモデルトレーニングパイプラインを利用する,形式化されたデータセット分割とサンプリング手法を含む。
論文 参考訳(メタデータ) (2024-01-26T22:21:39Z) - Progressive Feature Self-reinforcement for Weakly Supervised Semantic
Segmentation [55.69128107473125]
Weakly Supervised Semantic (WSSS) のイメージレベルラベルを用いたシングルステージアプローチを提案する。
我々は、画像内容が決定論的領域(例えば、自信ある前景と背景)と不確実領域(例えば、オブジェクト境界と誤分類されたカテゴリ)に適応的に分割して、別々の処理を行う。
そこで我々は,これらの自信のある領域と同一のクラスラベルを持つ拡張画像とのセマンティック一貫性を制約する補完的な自己強調手法を提案する。
論文 参考訳(メタデータ) (2023-12-14T13:21:52Z) - Agave crop segmentation and maturity classification with deep learning
data-centric strategies using very high-resolution satellite imagery [101.18253437732933]
超高解像度衛星画像を用いたAgave tequilana Weber azul crop segmentation and mature classificationを提案する。
実世界の深層学習問題を,作物の選別という非常に具体的な文脈で解決する。
結果として得られた正確なモデルにより、大規模地域で生産予測を行うことができる。
論文 参考訳(メタデータ) (2023-03-21T03:15:29Z) - Habitat classification from satellite observations with sparse
annotations [4.164845768197488]
リモートセンシングデータを用いた生息地分類とマッピング手法を提案する。
この方法は、フィールドから収集された細粒度でスパースな単一ピクセルアノテーションを使用することによって特徴付けられる。
本研究では, 収穫増量, 試験時間増量, 半教師付き学習が, さらに分類の助けとなることを示す。
論文 参考訳(メタデータ) (2022-09-26T20:14:59Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
本研究では,衛星画像の高可用性を活用するための自己監督型コントラスト事前学習法として,エンベディングアースを提案する。
提案手法による事前学習では, 25%の絶対mIoUが得られた。
学習した特徴は、異なる領域間で一般化され、提案した事前学習スキームの可能性を開放する。
論文 参考訳(メタデータ) (2022-03-11T16:14:14Z) - Large-scale Unsupervised Semantic Segmentation [163.3568726730319]
本稿では, 大規模無教師付きセマンティックセマンティックセグメンテーション (LUSS) の新たな課題を提案する。
ImageNetデータセットに基づいて、120万のトレーニング画像と40万の高品質なセマンティックセグメンテーションアノテーションを用いた画像Net-Sデータセットを提案する。
論文 参考訳(メタデータ) (2021-06-06T15:02:11Z) - Context-self contrastive pretraining for crop type semantic segmentation [39.81074867563505]
提案したContext-Self Contrastive Loss (CSCL)は、セマンティックバウンダリをポップアップさせる埋め込み空間を学習する。
衛星画像時系列(SITS)からの作物型セマンティックセマンティックセグメンテーションでは,サテライト境界における性能が重要なボトルネックとなる。
より粒度の高い作物のクラスを得るための超解像における意味的セグメンテーションのプロセスを提案する。
論文 参考訳(メタデータ) (2021-04-09T11:29:44Z) - An Efficient Method for the Classification of Croplands in Scarce-Label
Regions [0.0]
衛星時系列画像による農地分類の主な課題は、地表面データ不足と、未開発地域における高品質のハイパースペクトル画像の到達不能である。
ラベルなしの中解像度衛星画像は豊富だが、その恩恵を受けるにはオープンな問題だ。
自監督タスクを用いた作物分類におけるその可能性の活用方法を示す。
論文 参考訳(メタデータ) (2021-03-17T12:10:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。