HoliTom: Holistic Token Merging for Fast Video Large Language Models
- URL: http://arxiv.org/abs/2505.21334v2
- Date: Wed, 28 May 2025 10:49:18 GMT
- Title: HoliTom: Holistic Token Merging for Fast Video Large Language Models
- Authors: Kele Shao, Keda Tao, Can Qin, Haoxuan You, Yang Sui, Huan Wang,
- Abstract summary: Video language models (video LLMs) excel at video comprehension but face significant computational inefficiency due to redundant video tokens.<n>We introduce HoliTom, a novel training-free holistic token framework.<n>We also introduce a robust inner-LLM token similarity-based merging approach, designed for superior performance and compatibility with outer-LLM pruning.
- Score: 26.78285189552602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video large language models (video LLMs) excel at video comprehension but face significant computational inefficiency due to redundant video tokens. Existing token pruning methods offer solutions. However, approaches operating within the LLM (inner-LLM pruning), such as FastV, incur intrinsic computational overhead in shallow layers. In contrast, methods performing token pruning before the LLM (outer-LLM pruning) primarily address spatial redundancy within individual frames or limited temporal windows, neglecting the crucial global temporal dynamics and correlations across longer video sequences. This leads to sub-optimal spatio-temporal reduction and does not leverage video compressibility fully. Crucially, the synergistic potential and mutual influence of combining these strategies remain unexplored. To further reduce redundancy, we introduce HoliTom, a novel training-free holistic token merging framework. HoliTom employs outer-LLM pruning through global redundancy-aware temporal segmentation, followed by spatial-temporal merging to reduce visual tokens by over 90%, significantly alleviating the LLM's computational burden. Complementing this, we introduce a robust inner-LLM token similarity-based merging approach, designed for superior performance and compatibility with outer-LLM pruning. Evaluations demonstrate our method's promising efficiency-performance trade-off on LLaVA-OneVision-7B, reducing computational costs to 6.9% of FLOPs while maintaining 99.1% of the original performance. Furthermore, we achieve a 2.28x reduction in Time-To-First-Token (TTFT) and a 1.32x acceleration in decoding throughput, highlighting the practical benefits of our integrated pruning approach for efficient video LLMs inference.
Related papers
- Sparse-dLLM: Accelerating Diffusion LLMs with Dynamic Cache Eviction [58.044803442346115]
Diffusion Large Language Models (dLLMs) enable breakthroughs in reasoning and parallel decoding but suffer from prohibitive computational complexity and memory overhead during inference.<n>We propose Sparse-dLLM, the first training-free framework integrating dynamic cache eviction with sparse attention via delayed bidirectional sparse caching.
arXiv Detail & Related papers (2025-08-04T16:14:03Z) - SparseMM: Head Sparsity Emerges from Visual Concept Responses in MLLMs [74.2538340966038]
We investigate how Multimodal Large Language Models (MLLMs) process visual inputs by analyzing their attention mechanisms.<n>We reveal a surprising sparsity phenomenon: only a small subset of attention heads in LLMs actively contribute to visual understanding.<n>We introduce SparseMM, a KV-Cache optimization strategy that allocates asymmetric computation budgets to heads in LLMs based on their visual scores.
arXiv Detail & Related papers (2025-06-05T17:59:55Z) - DyMU: Dynamic Merging and Virtual Unmerging for Efficient VLMs [124.52164183968145]
We present DyMU, an efficient, training-free framework that reduces the computational burden of vision-language models (VLMs)<n>Our approach comprises two key components. First, Dynamic Token Merging (DToMe) reduces the number of visual token embeddings by merging similar tokens based on image complexity.<n>Second, Virtual Token Unmerging (VTU) simulates the expected token sequence for large language models (LLMs) by efficiently reconstructing the attention dynamics of a full sequence.
arXiv Detail & Related papers (2025-04-23T18:38:18Z) - Skip-Vision: Efficient and Scalable Acceleration of Vision-Language Models via Adaptive Token Skipping [13.846838416902575]
A key bottleneck stems from the proliferation of visual tokens required for fine-grained image understanding.<n>We propose Skip-Vision, a unified framework addressing both training and inference inefficiencies in vision-language models.<n> Experimental results demonstrate that Skip-Vision reduces training time by up to 35%, inference FLOPs by 75%, and latency by 45%.
arXiv Detail & Related papers (2025-03-26T04:16:48Z) - Token-Efficient Long Video Understanding for Multimodal LLMs [101.70681093383365]
STORM is a novel architecture incorporating a dedicated temporal encoder between the image encoder and the Video-LLMs.<n>We show that STORM achieves state-of-the-art results across various long video understanding benchmarks.
arXiv Detail & Related papers (2025-03-06T06:17:38Z) - RedundancyLens: Revealing and Exploiting Visual Token Processing Redundancy for Efficient Decoder-Only MLLMs [38.34856927170692]
We propose a training-free framework for analyzing trained Multimodal Large Language Model (MLLM)<n>It consists of Probe-Activated Dynamic FFN and Hollow Attention, which enable adjustable reductions in computations for visual tokens.<n>Experiments demonstrate substantial, structured, and clustered redundancy unique to decoder-only MLLMs.
arXiv Detail & Related papers (2025-01-31T11:09:16Z) - PAR: Prompt-Aware Token Reduction Method for Efficient Large Multimodal Models [32.33892531885448]
Multimodal large language models (MLLMs) demonstrate strong performance across visual tasks.<n>But their efficiency is hindered by significant computational and memory demands from processing long contexts in multimodal inputs.<n>We introduce PAR (Prompt-Aware Token Reduction), a novel and plug-and-play approach that reduces visual tokens efficiently without compromising model performance.
arXiv Detail & Related papers (2024-10-09T07:13:22Z) - Pluto and Charon: A Time and Memory Efficient Collaborative Edge AI Framework for Personal LLMs Fine-Tuning [13.26886445965894]
Pluto and Charon (PAC) is a time and memory efficient collaborative edge AI framework for personal LLMs fine-tuning.
PAC implements a personal LLMs fine-tuning technique that is efficient in terms of parameters, time, and memory.
Extensive evaluation based on prototype implementation demonstrates that PAC remarkably outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2024-08-20T11:30:12Z) - FFN-SkipLLM: A Hidden Gem for Autoregressive Decoding with Adaptive Feed Forward Skipping [49.66872823080736]
Autoregressive Large Language Models (e.g., LLaMa, GPTs) are omnipresent achieving remarkable success in language understanding and generation.
To mitigate overload incurred during generation, several early-exit and layer-dropping strategies have been proposed.
We propose FFN-SkipLLM, which is an input-adaptive feed-forward skipping strategy.
arXiv Detail & Related papers (2024-04-05T02:35:43Z) - An Image is Worth 1/2 Tokens After Layer 2: Plug-and-Play Inference Acceleration for Large Vision-Language Models [65.37846460916042]
We find out that the attention computation over visual tokens is of extreme inefficiency in the deep layers of popular LVLMs.
We introduce FastV, a versatile plug-and-play method designed to optimize computational efficiency.
arXiv Detail & Related papers (2024-03-11T14:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.