Can Large Reasoning Models Self-Train?
- URL: http://arxiv.org/abs/2505.21444v1
- Date: Tue, 27 May 2025 17:16:00 GMT
- Title: Can Large Reasoning Models Self-Train?
- Authors: Sheikh Shafayat, Fahim Tajwar, Ruslan Salakhutdinov, Jeff Schneider, Andrea Zanette,
- Abstract summary: Scaling the performance of large language models increasingly depends on methods that reduce reliance on human supervision.<n>We propose an online self-training reinforcement learning algorithm that leverages the model's self-consistency to infer correctness signals and train without any ground-truth supervision.
- Score: 58.953117118687096
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scaling the performance of large language models (LLMs) increasingly depends on methods that reduce reliance on human supervision. Reinforcement learning from automated verification offers an alternative, but it incurs scalability limitations due to dependency upon human-designed verifiers. Self-training, where the model's own judgment provides the supervisory signal, presents a compelling direction. We propose an online self-training reinforcement learning algorithm that leverages the model's self-consistency to infer correctness signals and train without any ground-truth supervision. We apply the algorithm to challenging mathematical reasoning tasks and show that it quickly reaches performance levels rivaling reinforcement-learning methods trained explicitly on gold-standard answers. Additionally, we analyze inherent limitations of the algorithm, highlighting how the self-generated proxy reward initially correlated with correctness can incentivize reward hacking, where confidently incorrect outputs are favored. Our results illustrate how self-supervised improvement can achieve significant performance gains without external labels, while also revealing its fundamental challenges.
Related papers
- Incentivizing LLMs to Self-Verify Their Answers [20.2584779107763]
Large Language Models (LLMs) have demonstrated remarkable progress in complex reasoning tasks.<n>We propose a framework that incentivizes LLMs to self-verify their own answers.<n>We train our self-verification models based on Qwen2.5-Math-7B and DeepSeek-R1-Distill-Qwen-1.5B.
arXiv Detail & Related papers (2025-06-02T06:54:29Z) - Trust, But Verify: A Self-Verification Approach to Reinforcement Learning with Verifiable Rewards [67.86091419220816]
Large Language Models (LLMs) show great promise in complex reasoning.<n>A prevalent issue is superficial self-reflection'', where models fail to robustly verify their own outputs.<n>We introduce RISE (Reinforcing Reasoning with Self-Verification), a novel online RL framework designed to tackle this.
arXiv Detail & Related papers (2025-05-19T17:59:31Z) - Self Rewarding Self Improving [0.0]
We demonstrate that large language models can effectively self-improve through self-judging without requiring reference solutions.<n>Our experiments on Countdown puzzles and MIT Integration Bee problems show that models can provide reliable reward signals without ground truth answers.
arXiv Detail & Related papers (2025-05-12T23:51:04Z) - Self-rewarding correction for mathematical reasoning [19.480508580498103]
We study self-rewarding reasoning large language models (LLMs)<n>LLMs can simultaneously generate step-by-step reasoning and evaluate the correctness of their outputs during the inference time-without external feedback.<n>We propose a two-staged algorithmic framework for constructing self-rewarding reasoning models using only self-generated data.
arXiv Detail & Related papers (2025-02-26T23:01:16Z) - ReVISE: Learning to Refine at Test-Time via Intrinsic Self-Verification [53.80183105328448]
Refine via Intrinsic Self-Verification (ReVISE) is an efficient framework that enables LLMs to self-correct their outputs through self-verification.<n>Our experiments on various reasoning tasks demonstrate that ReVISE achieves efficient self-correction and significantly improves reasoning performance.
arXiv Detail & Related papers (2025-02-20T13:50:02Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening.<n>Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training.<n>We analyze two natural families of self-improvement algorithms based on SFT and RLHF.
arXiv Detail & Related papers (2024-12-02T20:24:17Z) - Training Language Models to Self-Correct via Reinforcement Learning [98.35197671595343]
Self-correction has been found to be largely ineffective in modern large language models (LLMs)
We develop a multi-turn online reinforcement learning approach, SCoRe, that significantly improves an LLM's self-correction ability using entirely self-generated data.
We find that SCoRe achieves state-of-the-art self-correction performance, improving the base models' self-correction by 15.6% and 9.1% respectively on MATH and HumanEval.
arXiv Detail & Related papers (2024-09-19T17:16:21Z) - Augmenting Unsupervised Reinforcement Learning with Self-Reference [63.68018737038331]
Humans possess the ability to draw on past experiences explicitly when learning new tasks.
We propose the Self-Reference (SR) approach, an add-on module explicitly designed to leverage historical information.
Our approach achieves state-of-the-art results in terms of Interquartile Mean (IQM) performance and Optimality Gap reduction on the Unsupervised Reinforcement Learning Benchmark.
arXiv Detail & Related papers (2023-11-16T09:07:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.