High-Dimensional Calibration from Swap Regret
- URL: http://arxiv.org/abs/2505.21460v1
- Date: Tue, 27 May 2025 17:31:47 GMT
- Title: High-Dimensional Calibration from Swap Regret
- Authors: Maxwell Fishelson, Noah Golowich, Mehryar Mohri, Jon Schneider,
- Abstract summary: We study the online calibration of multi-dimensional forecasts over an arbitrary convex set $mathcalP subset mathbbRd$.<n>We show that if it is possible to guarantee $O(sqrtrho T)$ worst-case regret after $T$ rounds, it is possible to obtain $epsilon$-calibrated forecasts after $T = exp(logd/epsilon2).
- Score: 40.9736612423411
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the online calibration of multi-dimensional forecasts over an arbitrary convex set $\mathcal{P} \subset \mathbb{R}^d$ relative to an arbitrary norm $\Vert\cdot\Vert$. We connect this with the problem of external regret minimization for online linear optimization, showing that if it is possible to guarantee $O(\sqrt{\rho T})$ worst-case regret after $T$ rounds when actions are drawn from $\mathcal{P}$ and losses are drawn from the dual $\Vert \cdot \Vert_*$ unit norm ball, then it is also possible to obtain $\epsilon$-calibrated forecasts after $T = \exp(O(\rho /\epsilon^2))$ rounds. When $\mathcal{P}$ is the $d$-dimensional simplex and $\Vert \cdot \Vert$ is the $\ell_1$-norm, the existence of $O(\sqrt{T\log d})$-regret algorithms for learning with experts implies that it is possible to obtain $\epsilon$-calibrated forecasts after $T = \exp(O(\log{d}/\epsilon^2)) = d^{O(1/\epsilon^2)}$ rounds, recovering a recent result of Peng (2025). Interestingly, our algorithm obtains this guarantee without requiring access to any online linear optimization subroutine or knowledge of the optimal rate $\rho$ -- in fact, our algorithm is identical for every setting of $\mathcal{P}$ and $\Vert \cdot \Vert$. Instead, we show that the optimal regularizer for the above OLO problem can be used to upper bound the above calibration error by a swap regret, which we then minimize by running the recent TreeSwap algorithm with Follow-The-Leader as a subroutine. Finally, we prove that any online calibration algorithm that guarantees $\epsilon T$ $\ell_1$-calibration error over the $d$-dimensional simplex requires $T \geq \exp(\mathrm{poly}(1/\epsilon))$ (assuming $d \geq \mathrm{poly}(1/\epsilon)$). This strengthens the corresponding $d^{\Omega(\log{1/\epsilon})}$ lower bound of Peng, and shows that an exponential dependence on $1/\epsilon$ is necessary.
Related papers
- Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - Low-Rank Approximation with $1/\epsilon^{1/3}$ Matrix-Vector Products [58.05771390012827]
We study iterative methods based on Krylov subspaces for low-rank approximation under any Schatten-$p$ norm.
Our main result is an algorithm that uses only $tildeO(k/sqrtepsilon)$ matrix-vector products.
arXiv Detail & Related papers (2022-02-10T16:10:41Z) - Optimal SQ Lower Bounds for Learning Halfspaces with Massart Noise [9.378684220920562]
tightest statistical query (SQ) lower bounds for learnining halfspaces in the presence of Massart noise.
We show that for arbitrary $eta in [0,1/2]$ every SQ algorithm achieving misclassification error better than $eta$ requires queries of superpolynomial accuracy.
arXiv Detail & Related papers (2022-01-24T17:33:19Z) - Logarithmic Regret from Sublinear Hints [76.87432703516942]
We show that an algorithm can obtain $O(log T)$ regret with just $O(sqrtT)$ hints under a natural query model.
We also show that $o(sqrtT)$ hints cannot guarantee better than $Omega(sqrtT)$ regret.
arXiv Detail & Related papers (2021-11-09T16:50:18Z) - The planted matching problem: Sharp threshold and infinite-order phase
transition [25.41713098167692]
We study the problem of reconstructing a perfect matching $M*$ hidden in a randomly weighted $ntimes n$ bipartite graph.
We show that if $sqrtd B(mathcalP,mathcalQ) ge 1+epsilon$ for an arbitrarily small constant $epsilon>0$, the reconstruction error for any estimator is shown to be bounded away from $0$.
arXiv Detail & Related papers (2021-03-17T00:59:33Z) - Optimal Regret Algorithm for Pseudo-1d Bandit Convex Optimization [51.23789922123412]
We study online learning with bandit feedback (i.e. learner has access to only zeroth-order oracle) where cost/reward functions admit a "pseudo-1d" structure.
We show a lower bound of $min(sqrtdT, T3/4)$ for the regret of any algorithm, where $T$ is the number of rounds.
We propose a new algorithm sbcalg that combines randomized online gradient descent with a kernelized exponential weights method to exploit the pseudo-1d structure effectively.
arXiv Detail & Related papers (2021-02-15T08:16:51Z) - Fast digital methods for adiabatic state preparation [0.0]
We present a quantum algorithm for adiabatic state preparation on a gate-based quantum computer, with complexity polylogarithmic in the inverse error.
arXiv Detail & Related papers (2020-04-08T18:00:01Z) - Adaptive Online Learning with Varying Norms [45.11667443216861]
We provide an online convex optimization algorithm that outputs points $w_t$ in some domain $W$.
We apply this result to obtain new "full-matrix"-style regret bounds.
arXiv Detail & Related papers (2020-02-10T17:22:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.