Adversarial Attacks against Closed-Source MLLMs via Feature Optimal Alignment
- URL: http://arxiv.org/abs/2505.21494v1
- Date: Tue, 27 May 2025 17:56:57 GMT
- Title: Adversarial Attacks against Closed-Source MLLMs via Feature Optimal Alignment
- Authors: Xiaojun Jia, Sensen Gao, Simeng Qin, Tianyu Pang, Chao Du, Yihao Huang, Xinfeng Li, Yiming Li, Bo Li, Yang Liu,
- Abstract summary: Multimodal large language models (MLLMs) remain vulnerable to transferable adversarial attacks.<n>We propose a targeted transferable adversarial attack method based on feature optimal alignment.<n>Experiments demonstrate the superiority of the proposed method, outperforming state-of-the-art methods.
- Score: 35.77916460821855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal large language models (MLLMs) remain vulnerable to transferable adversarial examples. While existing methods typically achieve targeted attacks by aligning global features-such as CLIP's [CLS] token-between adversarial and target samples, they often overlook the rich local information encoded in patch tokens. This leads to suboptimal alignment and limited transferability, particularly for closed-source models. To address this limitation, we propose a targeted transferable adversarial attack method based on feature optimal alignment, called FOA-Attack, to improve adversarial transfer capability. Specifically, at the global level, we introduce a global feature loss based on cosine similarity to align the coarse-grained features of adversarial samples with those of target samples. At the local level, given the rich local representations within Transformers, we leverage clustering techniques to extract compact local patterns to alleviate redundant local features. We then formulate local feature alignment between adversarial and target samples as an optimal transport (OT) problem and propose a local clustering optimal transport loss to refine fine-grained feature alignment. Additionally, we propose a dynamic ensemble model weighting strategy to adaptively balance the influence of multiple models during adversarial example generation, thereby further improving transferability. Extensive experiments across various models demonstrate the superiority of the proposed method, outperforming state-of-the-art methods, especially in transferring to closed-source MLLMs. The code is released at https://github.com/jiaxiaojunQAQ/FOA-Attack.
Related papers
- Optimal Transport-based Domain Alignment as a Preprocessing Step for Federated Learning [0.48342038441006796]
Federated learning (FL) is a subfield of machine learning that avoids sharing local data with a central server.<n>In FL, fusing locally-trained models with unbalanced datasets may deteriorate the performance of global model aggregation.<n>We introduce an Optimal Transport-based preprocessing algorithm that aligns the datasets by minimizing the distributional discrepancy of data along the edge devices.
arXiv Detail & Related papers (2025-06-04T15:35:55Z) - X-Transfer Attacks: Towards Super Transferable Adversarial Attacks on CLIP [32.85582585781569]
We introduce textbfX-Transfer, a novel attack method that exposes a universal adversarial vulnerability in CLIP.<n>X-Transfer generates a Universal Adversarial Perturbation capable of deceiving various CLIP encoders and downstream VLMs across different samples, tasks, and domains.
arXiv Detail & Related papers (2025-05-08T11:59:13Z) - Unbiased Max-Min Embedding Classification for Transductive Few-Shot Learning: Clustering and Classification Are All You Need [83.10178754323955]
Few-shot learning enables models to generalize from only a few labeled examples.<n>We propose the Unbiased Max-Min Embedding Classification (UMMEC) Method, which addresses the key challenges in few-shot learning.<n>Our method significantly improves classification performance with minimal labeled data, advancing the state-of-the-art in annotatedL.
arXiv Detail & Related papers (2025-03-28T07:23:07Z) - GeneralizeFormer: Layer-Adaptive Model Generation across Test-Time Distribution Shifts [58.95913531746308]
We consider the problem of test-time domain generalization, where a model is trained on several source domains and adjusted on target domains never seen during training.<n>We propose to generate multiple layer parameters on the fly during inference by a lightweight meta-learned transformer, which we call textitGeneralizeFormer.
arXiv Detail & Related papers (2025-02-15T10:10:49Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) aims to connect the good ends of both worlds while bypassing their limitations.
DaC divides the target data into source-like and target-specific samples, where either group of samples is treated with tailored goals.
We further align the source-like domain with the target-specific samples using a memory bank-based Maximum Mean Discrepancy (MMD) loss to reduce the distribution mismatch.
arXiv Detail & Related papers (2022-11-12T09:21:49Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Improving Model Robustness with Latent Distribution Locally and Globally [28.99007833855102]
In this work, we consider model robustness of deep neural networks against adversarial attacks from a global manifold perspective.
We propose a novel adversarial training method through robust optimization, and a tractable way to generate Latent Manifold Adrial Examples (LMAEs)
The proposed adversarial training with latent distribution (ATLD) method defends against adversarial attacks by crafting LMAEs with the latent manifold in an unsupervised manner.
arXiv Detail & Related papers (2021-07-08T07:52:53Z) - On Generating Transferable Targeted Perturbations [102.3506210331038]
We propose a new generative approach for highly transferable targeted perturbations.
Our approach matches the perturbed image distribution' with that of the target class, leading to high targeted transferability rates.
arXiv Detail & Related papers (2021-03-26T17:55:28Z) - Contradictory Structure Learning for Semi-supervised Domain Adaptation [67.89665267469053]
Current adversarial adaptation methods attempt to align the cross-domain features.
Two challenges remain unsolved: 1) the conditional distribution mismatch and 2) the bias of the decision boundary towards the source domain.
We propose a novel framework for semi-supervised domain adaptation by unifying the learning of opposite structures.
arXiv Detail & Related papers (2020-02-06T22:58:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.