Self-Organizing Visual Prototypes for Non-Parametric Representation Learning
- URL: http://arxiv.org/abs/2505.21533v1
- Date: Fri, 23 May 2025 20:12:07 GMT
- Title: Self-Organizing Visual Prototypes for Non-Parametric Representation Learning
- Authors: Thalles Silva, Helio Pedrini, Adín Ramírez Rivera,
- Abstract summary: We present Self-Organizing Visual Prototypes (SOP), a new training technique for unsupervised visual feature learning.<n>In this strategy, a prototype is represented by many semantically similar representations, or support embeddings (SEs), each containing a complementary set of features.<n>We evaluate the representations learned using the SOP strategy on a range of benchmarks, including retrieval, linear evaluation, fine-tuning, and object detection.
- Score: 6.096888891865663
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Self-Organizing Visual Prototypes (SOP), a new training technique for unsupervised visual feature learning. Unlike existing prototypical self-supervised learning (SSL) methods that rely on a single prototype to encode all relevant features of a hidden cluster in the data, we propose the SOP strategy. In this strategy, a prototype is represented by many semantically similar representations, or support embeddings (SEs), each containing a complementary set of features that together better characterize their region in space and maximize training performance. We reaffirm the feasibility of non-parametric SSL by introducing novel non-parametric adaptations of two loss functions that implement the SOP strategy. Notably, we introduce the SOP Masked Image Modeling (SOP-MIM) task, where masked representations are reconstructed from the perspective of multiple non-parametric local SEs. We comprehensively evaluate the representations learned using the SOP strategy on a range of benchmarks, including retrieval, linear evaluation, fine-tuning, and object detection. Our pre-trained encoders achieve state-of-the-art performance on many retrieval benchmarks and demonstrate increasing performance gains with more complex encoders.
Related papers
- Few-Shot Inspired Generative Zero-Shot Learning [14.66239393852298]
Generative zero-shot learning (ZSL) methods typically synthesize visual features for unseen classes.<n>We propose FSIGenZ, a few-shot-inspired generative ZSL framework that reduces reliance on large-scale feature synthesis.<n>Experiments on SUN, AwA2, and CUB benchmarks demonstrate that FSIGenZ achieves competitive performance using far fewer synthetic features.
arXiv Detail & Related papers (2025-06-18T02:39:36Z) - Topology-Aware CLIP Few-Shot Learning [0.0]
We introduce a topology-aware tuning approach integrating Representation Topology Divergence into the Task Residual framework.<n>By explicitly aligning the topological structures of visual and text representations using a combined RTD and Cross-Entropy loss, our method enhances few-shot performance.
arXiv Detail & Related papers (2025-05-03T04:58:29Z) - CSE-SFP: Enabling Unsupervised Sentence Representation Learning via a Single Forward Pass [3.0566617373924325]
Recent advances in pre-trained language models (PLMs) have driven remarkable progress in this field.<n>We propose CSE-SFP, an innovative method that exploits the structural characteristics of generative models.<n>We show that CSE-SFP not only produces higher-quality embeddings but also significantly reduces both training time and memory consumption.
arXiv Detail & Related papers (2025-05-01T08:27:14Z) - Envisioning Class Entity Reasoning by Large Language Models for Few-shot Learning [13.68867780184022]
Few-shot learning aims to recognize new concepts using a limited number of visual samples.
Our framework incorporates both the abstract class semantics and the concrete class entities extracted from Large Language Models (LLMs)
For the challenging one-shot setting, our approach, utilizing the ResNet-12 backbone, achieves an average improvement of 1.95% over the second-best competitor.
arXiv Detail & Related papers (2024-08-22T15:10:20Z) - Masked Momentum Contrastive Learning for Zero-shot Semantic
Understanding [39.424931953675994]
Self-supervised pretraining (SSP) has emerged as a popular technique in machine learning, enabling the extraction of meaningful feature representations without labelled data.
This study endeavours to evaluate the effectiveness of pure self-supervised learning (SSL) techniques in computer vision tasks.
arXiv Detail & Related papers (2023-08-22T13:55:57Z) - MOCA: Self-supervised Representation Learning by Predicting Masked Online Codebook Assignments [72.6405488990753]
Self-supervised learning can be used for mitigating the greedy needs of Vision Transformer networks.
We propose a single-stage and standalone method, MOCA, which unifies both desired properties.
We achieve new state-of-the-art results on low-shot settings and strong experimental results in various evaluation protocols.
arXiv Detail & Related papers (2023-07-18T15:46:20Z) - RefSAM: Efficiently Adapting Segmenting Anything Model for Referring Video Object Segmentation [53.4319652364256]
This paper presents the RefSAM model, which explores the potential of SAM for referring video object segmentation.
Our proposed approach adapts the original SAM model to enhance cross-modality learning by employing a lightweight Cross-RValModal.
We employ a parameter-efficient tuning strategy to align and fuse the language and vision features effectively.
arXiv Detail & Related papers (2023-07-03T13:21:58Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
Retrieval-based machine learning methods have enjoyed success on a wide range of problems.
Despite growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored.
We present a formal treatment of retrieval-based models to characterize their generalization ability.
arXiv Detail & Related papers (2022-10-06T00:33:01Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
We propose a dual prototypical contrastive learning approach tailored to the few-shot semantic segmentation (FSS) task.
The main idea is to encourage the prototypes more discriminative by increasing inter-class distance while reducing intra-class distance in prototype feature space.
We demonstrate that the proposed dual contrastive learning approach outperforms state-of-the-art FSS methods on PASCAL-5i and COCO-20i datasets.
arXiv Detail & Related papers (2021-11-09T08:14:50Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Prototypical Contrastive Learning of Unsupervised Representations [171.3046900127166]
Prototypical Contrastive Learning (PCL) is an unsupervised representation learning method.
PCL implicitly encodes semantic structures of the data into the learned embedding space.
PCL outperforms state-of-the-art instance-wise contrastive learning methods on multiple benchmarks.
arXiv Detail & Related papers (2020-05-11T09:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.