Image denoising as a conditional expectation
- URL: http://arxiv.org/abs/2505.21546v1
- Date: Sat, 24 May 2025 21:30:56 GMT
- Title: Image denoising as a conditional expectation
- Authors: Sajal Chakroborty, Suddhasattwa Das,
- Abstract summary: Most common techniques estimate the true image as a projection to some subspace.<n>We propose an interpretation of a noisy image as a collection of samples drawn from a certain probability space.<n>We present a data-driven denoising method in which the true image is recovered as a conditional expectation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: All techniques for denoising involve a notion of a true (noise-free) image, and a hypothesis space. The hypothesis space may reconstruct the image directly as a grayscale valued function, or indirectly by its Fourier or wavelet spectrum. Most common techniques estimate the true image as a projection to some subspace. We propose an interpretation of a noisy image as a collection of samples drawn from a certain probability space. Within this interpretation, projection based approaches are not guaranteed to be unbiased and convergent. We present a data-driven denoising method in which the true image is recovered as a conditional expectation. Although the probability space is unknown apriori, integrals on this space can be estimated by kernel integral operators. The true image is reformulated as the least squares solution to a linear equation in a reproducing kernel Hilbert space (RKHS), and involving various kernel integral operators as linear transforms. Assuming the true image to be a continuous function on a compact planar domain, the technique is shown to be convergent as the number of pixels goes to infinity. We also show that for a picture with finite number of pixels, the convergence result can be used to choose the various parameters for an optimum denoising result.
Related papers
- Locally Orderless Images for Optimization in Differentiable Rendering [80.09571356394574]
We introduce a method that uses locally orderless images, where each pixel maps to a histogram of intensities that preserves local variations in appearance.<n>We validate our method on various inverse problems using both synthetic and real data.
arXiv Detail & Related papers (2025-03-27T19:17:58Z) - NoiseDiffusion: Correcting Noise for Image Interpolation with Diffusion Models beyond Spherical Linear Interpolation [86.7260950382448]
We propose a novel approach to correct noise for image validity, NoiseDiffusion.
NoiseDiffusion performs within the noisy image space and injects raw images into these noisy counterparts to address the challenge of information loss.
arXiv Detail & Related papers (2024-03-13T12:32:25Z) - Computerized Tomography and Reproducing Kernels [0.0]
We consider the X-ray transform as an operator between Reproducing Kernel Hilbert Spaces.
Within this framework, the X-ray transform can be viewed as a natural analogue of Euclidean projection.
arXiv Detail & Related papers (2023-11-13T16:53:38Z) - A Novel Truncated Norm Regularization Method for Multi-channel Color
Image Denoising [5.624787484101139]
This paper is proposed to denoise color images with a double-weighted truncated nuclear norm minus truncated Frobenius norm minimization (DtNFM) method.
Through exploiting the nonlocal self-similarity of the noisy image, the similar structures are gathered and a series of similar patch matrices are constructed.
Experiments on synthetic and real noise datasets demonstrate that the proposed method outperforms many state-of-the-art color image denoising methods.
arXiv Detail & Related papers (2023-07-16T03:40:35Z) - Score-based Diffusion Models in Function Space [137.70916238028306]
Diffusion models have recently emerged as a powerful framework for generative modeling.<n>This work introduces a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.<n>We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Representing Noisy Image Without Denoising [91.73819173191076]
Fractional-order Moments in Radon space (FMR) is designed to derive robust representation directly from noisy images.
Unlike earlier integer-order methods, our work is a more generic design taking such classical methods as special cases.
arXiv Detail & Related papers (2023-01-18T10:13:29Z) - Multi-channel Nuclear Norm Minus Frobenius Norm Minimization for Color
Image Denoising [9.20787253404652]
One traditional strategy is to convert the RGB image to a less correlated color space and denoise each channel of the new space separately.
This paper proposes a new multi-channel optimization model for color image denoising under the nuclear norm minus Frobenius norm minimization framework.
Experimental results on both synthetic and real noise datasets demonstrate the proposed model outperforms state-of-the-art models.
arXiv Detail & Related papers (2022-09-16T04:10:29Z) - Lifting the Convex Conjugate in Lagrangian Relaxations: A Tractable
Approach for Continuous Markov Random Fields [53.31927549039624]
We show that a piecewise discretization preserves better contrast from existing discretization problems.
We apply this theory to the problem of matching two images.
arXiv Detail & Related papers (2021-07-13T12:31:06Z) - Robust Uncertainty Bounds in Reproducing Kernel Hilbert Spaces: A Convex
Optimization Approach [9.462535418331615]
It is known that out-of-sample bounds can be established at unseen input locations.
We show how computing tight, finite-sample uncertainty bounds amounts to solving parametrically constrained linear programs.
arXiv Detail & Related papers (2021-04-19T19:27:52Z) - Joint Estimation of Image Representations and their Lie Invariants [57.3768308075675]
Images encode both the state of the world and its content.
The automatic extraction of this information is challenging because of the high-dimensionality and entangled encoding inherent to the image representation.
This article introduces two theoretical approaches aimed at the resolution of these challenges.
arXiv Detail & Related papers (2020-12-05T00:07:41Z) - End-to-end Interpretable Learning of Non-blind Image Deblurring [102.75982704671029]
Non-blind image deblurring is typically formulated as a linear least-squares problem regularized by natural priors on the corresponding sharp picture's gradients.
We propose to precondition the Richardson solver using approximate inverse filters of the (known) blur and natural image prior kernels.
arXiv Detail & Related papers (2020-07-03T15:45:01Z) - The Maximum Entropy on the Mean Method for Image Deblurring [4.4518351404598375]
Image deblurring is a notoriously challenging ill-posed inverse problem.
We propose an alternative approach, shifting the paradigm towards regularization at the level of the probability distribution on the space of images.
Our method is based upon the idea of maximum entropy on the mean wherein we work at the level of the probability density function of the image.
arXiv Detail & Related papers (2020-02-24T18:30:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.