Analytical Calculation of Weights Convolutional Neural Network
- URL: http://arxiv.org/abs/2505.21557v1
- Date: Mon, 26 May 2025 19:17:19 GMT
- Title: Analytical Calculation of Weights Convolutional Neural Network
- Authors: Polad Geidarov,
- Abstract summary: This paper presents an algorithm for analytically calculating the weights and thresholds of convolutional neural networks (CNNs) without using standard training procedures.<n>The algorithm enables the determination of CNN parameters based on just 10 selected images from the MNIST dataset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents an algorithm for analytically calculating the weights and thresholds of convolutional neural networks (CNNs) without using standard training procedures. The algorithm enables the determination of CNN parameters based on just 10 selected images from the MNIST dataset, each representing a digit from 0 to 9. As part of the method, the number of channels in CNN layers is also derived analytically. A software module was implemented in C++ Builder, and a series of experiments were conducted using the MNIST dataset. Results demonstrate that the analytically computed CNN can recognize over half of 1000 handwritten digit images without any training, achieving inference in fractions of a second. These findings suggest that CNNs can be constructed and applied directly for classification tasks without training, using purely analytical computation of weights.
Related papers
- Model Parallel Training and Transfer Learning for Convolutional Neural Networks by Domain Decomposition [0.0]
Deep convolutional neural networks (CNNs) have been shown to be very successful in a wide range of image processing applications.
Due to their increasing number of model parameters and an increasing availability of large amounts of training data, parallelization strategies to efficiently train complex CNNs are necessary.
arXiv Detail & Related papers (2024-08-26T17:35:01Z) - CNN2GNN: How to Bridge CNN with GNN [59.42117676779735]
We propose a novel CNN2GNN framework to unify CNN and GNN together via distillation.
The performance of distilled boosted'' two-layer GNN on Mini-ImageNet is much higher than CNN containing dozens of layers such as ResNet152.
arXiv Detail & Related papers (2024-04-23T08:19:08Z) - Training Convolutional Neural Networks with the Forward-Forward
algorithm [1.74440662023704]
Forward Forward (FF) algorithm has up to now only been used in fully connected networks.
We show how the FF paradigm can be extended to CNNs.
Our FF-trained CNN, featuring a novel spatially-extended labeling technique, achieves a classification accuracy of 99.16% on the MNIST hand-written digits dataset.
arXiv Detail & Related papers (2023-12-22T18:56:35Z) - DLSIA: Deep Learning for Scientific Image Analysis [45.81637398863868]
DLSIA is a Python-based machine learning library that empowers scientists and researchers across diverse scientific domains with a range of customizable convolutional neural network (CNN) architectures.
DLSIA features easy-to-use architectures such as autoencoders, tunable U-Nets, and parameter-lean mixed-scale dense networks (MSDNets)
arXiv Detail & Related papers (2023-08-02T21:32:41Z) - Testing the Channels of Convolutional Neural Networks [8.927538538637783]
We propose techniques for testing the channels of convolutional neural networks (CNNs)
We design FtGAN, an extension to GAN, that can generate test data with varying the intensity of a channel of a target CNN.
We also proposed a channel selection algorithm to find representative channels for testing.
arXiv Detail & Related papers (2023-03-06T09:58:39Z) - Large-Margin Representation Learning for Texture Classification [67.94823375350433]
This paper presents a novel approach combining convolutional layers (CLs) and large-margin metric learning for training supervised models on small datasets for texture classification.
The experimental results on texture and histopathologic image datasets have shown that the proposed approach achieves competitive accuracy with lower computational cost and faster convergence when compared to equivalent CNNs.
arXiv Detail & Related papers (2022-06-17T04:07:45Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
We study how neural networks trained by gradient descent extrapolate what they learn outside the support of the training distribution.
Graph Neural Networks (GNNs) have shown some success in more complex tasks.
arXiv Detail & Related papers (2020-09-24T17:48:59Z) - Region Growing with Convolutional Neural Networks for Biomedical Image
Segmentation [1.5469452301122177]
We present a methodology that uses convolutional neural networks (CNNs) for segmentation by iteratively growing predicted mask regions in each coordinate direction.
We use a threshold on the CNN probability scores to determine whether pixels are added to the region and the iteration continues until no new pixels are added to the region.
Our method is able to achieve high segmentation accuracy and preserve biologically realistic morphological features while leveraging small amounts of training data and maintaining computational efficiency.
arXiv Detail & Related papers (2020-09-23T17:53:00Z) - An Information-theoretic Visual Analysis Framework for Convolutional
Neural Networks [11.15523311079383]
We introduce a data model to organize the data that can be extracted from CNN models.
We then propose two ways to calculate entropy under different circumstances.
We develop a visual analysis system, CNNSlicer, to interactively explore the amount of information changes inside the model.
arXiv Detail & Related papers (2020-05-02T21:36:50Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z) - Computational optimization of convolutional neural networks using
separated filters architecture [69.73393478582027]
We consider a convolutional neural network transformation that reduces computation complexity and thus speedups neural network processing.
Use of convolutional neural networks (CNN) is the standard approach to image recognition despite the fact they can be too computationally demanding.
arXiv Detail & Related papers (2020-02-18T17:42:13Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
We show a ResNet-type CNN can attain the minimax optimal error rates in important function classes.
We derive approximation and estimation error rates of the aformentioned type of CNNs for the Barron and H"older classes.
arXiv Detail & Related papers (2019-03-24T19:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.