論文の概要: Fog Intelligence for Network Anomaly Detection
- arxiv url: http://arxiv.org/abs/2505.21563v1
- Date: Tue, 27 May 2025 03:35:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 17:35:50.164786
- Title: Fog Intelligence for Network Anomaly Detection
- Title(参考訳): ネットワーク異常検出のためのフォグインテリジェンス
- Authors: Kai Yang, Hui Ma, Shaoyu Dou,
- Abstract要約: 我々は、インテリジェントな無線ネットワーク管理を可能にする分散機械学習アーキテクチャであるフォグインテリジェンスを提案する。
提案したアーキテクチャはスケーラブルで、プライバシ保護が可能で、分散無線ネットワークのインテリジェントな管理に適している。
- 参考スコア(独自算出の注目度): 3.230612263337109
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomalies are common in network system monitoring. When manifested as network threats to be mitigated, service outages to be prevented, and security risks to be ameliorated, detecting such anomalous network behaviors becomes of great importance. However, the growing scale and complexity of the mobile communication networks, as well as the ever-increasing amount and dimensionality of the network surveillance data, make it extremely difficult to monitor a mobile network and discover abnormal network behaviors. Recent advances in machine learning allow for obtaining near-optimal solutions to complicated decision-making problems with many sources of uncertainty that cannot be accurately characterized by traditional mathematical models. However, most machine learning algorithms are centralized, which renders them inapplicable to a large-scale distributed wireless networks with tens of millions of mobile devices. In this article, we present fog intelligence, a distributed machine learning architecture that enables intelligent wireless network management. It preserves the advantage of both edge processing and centralized cloud computing. In addition, the proposed architecture is scalable, privacy-preserving, and well suited for intelligent management of a distributed wireless network.
- Abstract(参考訳): ネットワークシステム監視では異常が一般的である。
ネットワークの脅威が軽減され、サービス停止が防止され、セキュリティリスクが改善されると、そのような異常なネットワークの振る舞いを検出することが非常に重要になる。
しかし,移動体通信ネットワークの規模や複雑さが増大し,ネットワーク監視データの量や次元が増大するにつれ,移動体ネットワークの監視や異常なネットワーク行動の発見が極めて困難になる。
機械学習の最近の進歩は、従来の数学的モデルによって正確に特徴づけられない多くの不確実性の源を持つ複雑な意思決定問題に対する、ほぼ最適解を得ることを可能にする。
しかし、ほとんどの機械学習アルゴリズムは中央集権化されており、数千万台のモバイルデバイスを持つ大規模分散無線ネットワークには適用できない。
本稿では,インテリジェントな無線ネットワーク管理を実現する分散型機械学習アーキテクチャであるフォグインテリジェンスについて述べる。
エッジ処理と集中型クラウドコンピューティングの両方の利点を保っている。
さらに,提案アーキテクチャはスケーラブルで,プライバシ保護に優れ,分散無線ネットワークのインテリジェントな管理に適している。
関連論文リスト
- AI Flow at the Network Edge [58.31090055138711]
AI Flowは、デバイス、エッジノード、クラウドサーバ間で利用可能な異種リソースを共同で活用することで、推論プロセスを合理化するフレームワークである。
この記事では、AI Flowのモチベーション、課題、原則を特定するためのポジションペーパーとして機能する。
論文 参考訳(メタデータ) (2024-11-19T12:51:17Z) - Distributing Intelligence in 6G Programmable Data Planes for Effective In-Network Intrusion Prevention [2.563180814294141]
本研究の目的は、将来のプログラマブルネットワークの典型的なデータプレーンのデバイスが異常検出機能を有し、完全に分散した方法で協調してML対応侵入防止システムとして機能する破壊的パラダイムを提案することである。
報告された概念実証実験は、提案されたパラダイムによって、デバイス全体のCPUやRAMリソースの削減を図りながら、効果的かつ良好な精度で作業することが可能であることを実証している。
論文 参考訳(メタデータ) (2024-10-31T15:14:15Z) - Enhancing Network Resilience through Machine Learning-powered Graph
Combinatorial Optimization: Applications in Cyber Defense and Information
Diffusion [0.0]
この論文は、ネットワークのレジリエンスを高める効果的なアプローチの開発に焦点を当てている。
ネットワークのレジリエンスを高めるための既存のアプローチは、ネットワーク内のボトルネックノードとエッジを決定することを強調する。
この論文は、ネットワーク内のボトルネックノードとエッジを発見するための効率的で効率的でスケーラブルなテクニックを設計することを目的としている。
論文 参考訳(メタデータ) (2023-09-22T01:48:28Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
第6世代通信ネットワーク(6G)の強化のための価値あるソリューション空間の提供を約束する。
本稿では,空対地統合通信におけるユーザスケジューリングにおける機械学習の可能性について述べる。
論文 参考訳(メタデータ) (2022-05-27T13:09:29Z) - Dynamic Network Reconfiguration for Entropy Maximization using Deep
Reinforcement Learning [3.012947865628207]
ネットワーク理論の鍵となる問題は、定量化対象を最適化するためにグラフを再構成する方法である。
本稿では、マルコフ決定過程(MDP)として、指定された構造特性を最適化するネットワークリウィリングの問題を提起する。
次に,Deep Q-Network(DQN)アルゴリズムとグラフニューラルネットワーク(GNN)に基づく一般的な手法を提案する。
論文 参考訳(メタデータ) (2022-05-26T18:44:22Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
次世代のワイヤレスネットワークは、エッジデバイスが収集するさまざまな種類のデータを分析する多くの機械学習ツールやアプリケーションを可能にする。
エッジデバイスが生データ交換なしでMLモデルを協調的にトレーニングできるようにする手段として,分散学習と推論技術が提案されている。
本稿では,ワイヤレスエッジネットワーク上で分散学習を効率的に効果的に展開する方法を包括的に研究する。
論文 参考訳(メタデータ) (2021-04-05T20:57:56Z) - Deep Reinforcement Learning-Aided RAN Slicing Enforcement for B5G
Latency Sensitive Services [10.718353079920007]
本論文では、無線アクセスネットワークスライスと無線リソース管理に対処するために、ネットワークの端でDeep Reinforcement Learningを利用する新しいアーキテクチャを提案する。
提案手法の有効性を,自律走行型ユースケースを考慮したコンピュータシミュレーションにより検討した。
論文 参考訳(メタデータ) (2021-03-18T14:18:34Z) - Machine Learning based Anomaly Detection for 5G Networks [0.0]
本稿では,SDS(Software Defined Security)を,自動化,柔軟性,スケーラブルなネットワーク防御システムとして提案する。
SDSは機械学習の現在の進歩を活用して、NAS(Neural Architecture Search)を使用してCNN(Convolutional Neural Network)を設計し、異常なネットワークトラフィックを検出する。
論文 参考訳(メタデータ) (2020-03-07T00:17:08Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z) - Firearm Detection and Segmentation Using an Ensemble of Semantic Neural
Networks [62.997667081978825]
本稿では,意味的畳み込みニューラルネットワークのアンサンブルに基づく兵器検出システムを提案する。
特定のタスクに特化した単純なニューラルネットワークのセットは、計算リソースを少なくし、並列にトレーニングすることができる。
個々のネットワークの出力の集約によって与えられるシステムの全体的な出力は、ユーザが偽陽性と偽陰性とをトレードオフするように調整することができる。
論文 参考訳(メタデータ) (2020-02-11T13:58:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。