Fog Intelligence for Network Anomaly Detection
- URL: http://arxiv.org/abs/2505.21563v1
- Date: Tue, 27 May 2025 03:35:07 GMT
- Title: Fog Intelligence for Network Anomaly Detection
- Authors: Kai Yang, Hui Ma, Shaoyu Dou,
- Abstract summary: We present fog intelligence, a distributed machine learning architecture that enables intelligent wireless network management.<n>The proposed architecture is scalable, privacy-preserving, and well suited for intelligent management of a distributed wireless network.
- Score: 3.230612263337109
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomalies are common in network system monitoring. When manifested as network threats to be mitigated, service outages to be prevented, and security risks to be ameliorated, detecting such anomalous network behaviors becomes of great importance. However, the growing scale and complexity of the mobile communication networks, as well as the ever-increasing amount and dimensionality of the network surveillance data, make it extremely difficult to monitor a mobile network and discover abnormal network behaviors. Recent advances in machine learning allow for obtaining near-optimal solutions to complicated decision-making problems with many sources of uncertainty that cannot be accurately characterized by traditional mathematical models. However, most machine learning algorithms are centralized, which renders them inapplicable to a large-scale distributed wireless networks with tens of millions of mobile devices. In this article, we present fog intelligence, a distributed machine learning architecture that enables intelligent wireless network management. It preserves the advantage of both edge processing and centralized cloud computing. In addition, the proposed architecture is scalable, privacy-preserving, and well suited for intelligent management of a distributed wireless network.
Related papers
- AI Flow at the Network Edge [58.31090055138711]
AI Flow is a framework that streamlines the inference process by jointly leveraging the heterogeneous resources available across devices, edge nodes, and cloud servers.<n>This article serves as a position paper for identifying the motivation, challenges, and principles of AI Flow.
arXiv Detail & Related papers (2024-11-19T12:51:17Z) - Distributing Intelligence in 6G Programmable Data Planes for Effective In-Network Intrusion Prevention [2.563180814294141]
This research aims to propose a disruptive paradigm in which devices in a typical data plane of a future programmable network have anomaly detection capabilities and cooperate in a fully distributed fashion to act as an ML-enabled Intrusion Prevention System embedded" into the network.<n>The reported proof-of-concept experiments demonstrate that the proposed paradigm allows working effectively and with a good level of precision while occupying overall less CPU and RAM resources of the devices involved.
arXiv Detail & Related papers (2024-10-31T15:14:15Z) - Enhancing Network Resilience through Machine Learning-powered Graph
Combinatorial Optimization: Applications in Cyber Defense and Information
Diffusion [0.0]
This thesis focuses on developing effective approaches for enhancing network resilience.
Existing approaches for enhancing network resilience emphasize on determining bottleneck nodes and edges in the network.
This thesis aims to design effective, efficient and scalable techniques for discovering bottleneck nodes and edges in the network.
arXiv Detail & Related papers (2023-09-22T01:48:28Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
Integrated space-air-ground networks promise to offer a valuable solution space for empowering the sixth generation of communication networks (6G)
This paper showcases the prospects of machine learning in the context of user scheduling in integrated space-air-ground communications.
arXiv Detail & Related papers (2022-05-27T13:09:29Z) - Dynamic Network Reconfiguration for Entropy Maximization using Deep
Reinforcement Learning [3.012947865628207]
Key problem in network theory is how to reconfigure a graph in order to optimize a quantifiable objective.
In this paper, we cast the problem of network rewiring for optimizing a specified structural property as a Markov Decision Process (MDP)
We then propose a general approach based on the Deep Q-Network (DQN) algorithm and graph neural networks (GNNs) that can efficiently learn strategies for rewiring networks.
arXiv Detail & Related papers (2022-05-26T18:44:22Z) - Distributed Learning in Wireless Networks: Recent Progress and Future
Challenges [170.35951727508225]
Next-generation wireless networks will enable many machine learning (ML) tools and applications to analyze various types of data collected by edge devices.
Distributed learning and inference techniques have been proposed as a means to enable edge devices to collaboratively train ML models without raw data exchanges.
This paper provides a comprehensive study of how distributed learning can be efficiently and effectively deployed over wireless edge networks.
arXiv Detail & Related papers (2021-04-05T20:57:56Z) - Deep Reinforcement Learning-Aided RAN Slicing Enforcement for B5G
Latency Sensitive Services [10.718353079920007]
This paper presents a novel architecture that leverages Deep Reinforcement Learning at the edge of the network in order to address Radio Access Network Slicing and Radio Resource Management.
The effectiveness of our proposal against baseline methodologies is investigated through computer simulation, by considering an autonomous-driving use-case.
arXiv Detail & Related papers (2021-03-18T14:18:34Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z) - Machine Learning based Anomaly Detection for 5G Networks [0.0]
This paper proposes SDS (Software Defined Security) as a means to provide an automated, flexible and scalable network defence system.
SDS will harness current advances in machine learning to design a CNN (Convolutional Neural Network) using NAS (Neural Architecture Search) to detect anomalous network traffic.
arXiv Detail & Related papers (2020-03-07T00:17:08Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
We first summarize how to apply data-driven supervised deep learning and deep reinforcement learning in URLLC.
To address these open problems, we develop a multi-level architecture that enables device intelligence, edge intelligence, and cloud intelligence for URLLC.
arXiv Detail & Related papers (2020-02-22T14:38:11Z) - Firearm Detection and Segmentation Using an Ensemble of Semantic Neural
Networks [62.997667081978825]
We present a weapon detection system based on an ensemble of semantic Convolutional Neural Networks.
A set of simpler neural networks dedicated to specific tasks requires less computational resources and can be trained in parallel.
The overall output of the system given by the aggregation of the outputs of individual networks can be tuned by a user to trade-off false positives and false negatives.
arXiv Detail & Related papers (2020-02-11T13:58:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.