Concentration Distribution Learning from Label Distributions
- URL: http://arxiv.org/abs/2505.21576v1
- Date: Tue, 27 May 2025 07:53:27 GMT
- Title: Concentration Distribution Learning from Label Distributions
- Authors: Jiawei Tang, Yuheng Jia,
- Abstract summary: We come up with a new concept named background concentration to serve as the absolute description degree term of the label distribution.<n>We propose a novel model by probabilistic methods and neural networks to learn label distributions and background concentrations from existing LDL datasets.
- Score: 19.650545340162726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Label distribution learning (LDL) is an effective method to predict the relative label description degree (a.k.a. label distribution) of a sample. However, the label distribution is not a complete representation of an instance because it overlooks the absolute intensity of each label. Specifically, it's impossible to obtain the total description degree of hidden labels that not in the label space, which leads to the loss of information and confusion in instances. To solve the above problem, we come up with a new concept named background concentration to serve as the absolute description degree term of the label distribution and introduce it into the LDL process, forming the improved paradigm of concentration distribution learning. Moreover, we propose a novel model by probabilistic methods and neural networks to learn label distributions and background concentrations from existing LDL datasets. Extensive experiments prove that the proposed approach is able to extract background concentrations from label distributions while producing more accurate prediction results than the state-of-the-art LDL methods. The code is available in https://github.com/seutjw/CDL-LD.
Related papers
- Label Distribution Learning with Biased Annotations by Learning Multi-Label Representation [120.97262070068224]
Multi-label learning (MLL) has gained attention for its ability to represent real-world data.<n>Label Distribution Learning (LDL) faces challenges in collecting accurate label distributions.
arXiv Detail & Related papers (2025-02-03T09:04:03Z) - Label Distribution Learning using the Squared Neural Family on the Probability Simplex [15.680835401104247]
We propose a novel label distribution learning model SNEFY-LDL.<n>It estimates a probability distribution of all possible label distributions over the simplex.<n>It can be used to predict the ground-truth label distributions, construct label distribution confidence intervals, and measure the correlations between different labels.
arXiv Detail & Related papers (2024-12-10T09:12:02Z) - Towards Better Performance in Incomplete LDL: Addressing Data Imbalance [48.54894491724677]
We propose textIncomplete and Imbalance Label Distribution Learning (I(2)LDL), a framework that simultaneously handles incomplete labels and imbalanced label distributions.
Our method decomposes the label distribution matrix into a low-rank component for frequent labels and a sparse component for rare labels, effectively capturing the structure of both head and tail labels.
arXiv Detail & Related papers (2024-10-17T14:12:57Z) - Continuous Contrastive Learning for Long-Tailed Semi-Supervised Recognition [50.61991746981703]
Current state-of-the-art LTSSL approaches rely on high-quality pseudo-labels for large-scale unlabeled data.
This paper introduces a novel probabilistic framework that unifies various recent proposals in long-tail learning.
We introduce a continuous contrastive learning method, CCL, extending our framework to unlabeled data using reliable and smoothed pseudo-labels.
arXiv Detail & Related papers (2024-10-08T15:06:10Z) - Inaccurate Label Distribution Learning with Dependency Noise [52.08553913094809]
We introduce the Dependent Noise-based Inaccurate Label Distribution Learning (DN-ILDL) framework to tackle the challenges posed by noise in label distribution learning.
We show that DN-ILDL effectively addresses the ILDL problem and outperforms existing LDL methods.
arXiv Detail & Related papers (2024-05-26T07:58:07Z) - Label Distribution Learning from Logical Label [19.632157794117553]
Label distribution learning (LDL) is an effective method to predict the label description degree (a.k.a. label distribution) of a sample.
But annotating label distribution for training samples is extremely costly.
We propose a novel method to learn an LDL model directly from the logical label, which unifies LE and LDL into a joint model.
arXiv Detail & Related papers (2023-03-13T04:31:35Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
We propose a label distribution perspective for PU learning in this paper.
Motivated by this, we propose to pursue the label distribution consistency between predicted and ground-truth label distributions.
Experiments on three benchmark datasets validate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-12-06T07:38:29Z) - Label distribution learning via label correlation grid [9.340734188957727]
We propose a textbfLabel textbfCorrelation textbfGrid (LCG) to model the uncertainty of label relationships.
Our network learns the LCG to accurately estimate the label distribution for each instance.
arXiv Detail & Related papers (2022-10-15T03:58:15Z) - Instance-Dependent Partial Label Learning [69.49681837908511]
Partial label learning is a typical weakly supervised learning problem.
Most existing approaches assume that the incorrect labels in each training example are randomly picked as the candidate labels.
In this paper, we consider instance-dependent and assume that each example is associated with a latent label distribution constituted by the real number of each label.
arXiv Detail & Related papers (2021-10-25T12:50:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.