Rethinking Chunk Size For Long-Document Retrieval: A Multi-Dataset Analysis
- URL: http://arxiv.org/abs/2505.21700v2
- Date: Thu, 29 May 2025 09:16:42 GMT
- Title: Rethinking Chunk Size For Long-Document Retrieval: A Multi-Dataset Analysis
- Authors: Sinchana Ramakanth Bhat, Max Rudat, Jannis Spiekermann, Nicolas Flores-Herr,
- Abstract summary: We evaluate fixed-size chunking strategies and their influence on retrieval performance using multiple embedding models.<n>Our experiments, conducted on both short-form and long-form datasets, reveal that chunk size plays a critical role in retrieval effectiveness.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chunking is a crucial preprocessing step in retrieval-augmented generation (RAG) systems, significantly impacting retrieval effectiveness across diverse datasets. In this study, we systematically evaluate fixed-size chunking strategies and their influence on retrieval performance using multiple embedding models. Our experiments, conducted on both short-form and long-form datasets, reveal that chunk size plays a critical role in retrieval effectiveness -- smaller chunks (64-128 tokens) are optimal for datasets with concise, fact-based answers, whereas larger chunks (512-1024 tokens) improve retrieval in datasets requiring broader contextual understanding. We also analyze the impact of chunking on different embedding models, finding that they exhibit distinct chunking sensitivities. While models like Stella benefit from larger chunks, leveraging global context for long-range retrieval, Snowflake performs better with smaller chunks, excelling at fine-grained, entity-based matching. Our results underscore the trade-offs between chunk size, embedding models, and dataset characteristics, emphasizing the need for improved chunk quality measures, and more comprehensive datasets to advance chunk-based retrieval in long-document Information Retrieval (IR).
Related papers
- SitEmb-v1.5: Improved Context-Aware Dense Retrieval for Semantic Association and Long Story Comprehension [77.93156509994994]
We show how to represent short chunks in a way that is conditioned on a broader context window to enhance retrieval performance.<n>Existing embedding models are not well-equipped to encode such situated context effectively.<n>Our method substantially outperforms state-of-the-art embedding models.
arXiv Detail & Related papers (2025-08-03T23:59:31Z) - Exploring Training and Inference Scaling Laws in Generative Retrieval [50.82554729023865]
We investigate how model size, training data scale, and inference-time compute jointly influence generative retrieval performance.<n>Our experiments show that n-gram-based methods demonstrate strong alignment with both training and inference scaling laws.<n>We find that LLaMA models consistently outperform T5 models, suggesting a particular advantage for larger decoder-only models in generative retrieval.
arXiv Detail & Related papers (2025-03-24T17:59:03Z) - Pseudo Relevance Feedback is Enough to Close the Gap Between Small and Large Dense Retrieval Models [29.934928091542375]
Scaling dense retrievers to larger large language model (LLM) backbones has been a dominant strategy for improving their retrieval effectiveness.<n>We introduce PromptPRF, a feature-based pseudo-relevance feedback (PRF) framework that enables small LLM-based dense retrievers to achieve effectiveness comparable to much larger models.
arXiv Detail & Related papers (2025-03-19T04:30:20Z) - Datasets, Documents, and Repetitions: The Practicalities of Unequal Data Quality [67.67387254989018]
We study model performance at various compute budgets and across multiple pre-training datasets created through data filtering and deduplication.<n>We find that, given appropriate modifications to the training recipe, repeating existing aggressively filtered datasets for up to ten epochs can outperform training on the ten times larger superset for a single epoch across multiple compute budget orders of magnitude.
arXiv Detail & Related papers (2025-03-10T21:51:17Z) - Investigating the Scalability of Approximate Sparse Retrieval Algorithms to Massive Datasets [8.1990111961557]
We investigate the behavior of state-of-the-art retrieval algorithms on massive datasets.<n>We compare and contrast the recently-proposed Seismic and graph-based solutions adapted from dense retrieval.<n>We extensively evaluate Splade embeddings of 138M passages from MsMarco-v2 and report indexing time and other efficiency and effectiveness metrics.
arXiv Detail & Related papers (2025-01-20T17:59:21Z) - A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - Scaling Retrieval-Based Language Models with a Trillion-Token Datastore [85.4310806466002]
We find that increasing the size of the datastore used by a retrieval-based LM monotonically improves language modeling and several downstream tasks without obvious saturation.
By plotting compute-optimal scaling curves with varied datastore, model, and pretraining data sizes, we show that using larger datastores can significantly improve model performance for the same training compute budget.
arXiv Detail & Related papers (2024-07-09T08:27:27Z) - Fine-Tuning or Fine-Failing? Debunking Performance Myths in Large Language Models [0.8399688944263842]
Large Language Models (LLMs) have the capability to understand and generate human-like text from input queries.
This study extends this concept to the integration of LLMs within Retrieval-Augmented Generation (RAG) pipelines.
We evaluate the impact of fine-tuning on the LLMs' capacity for data extraction and contextual understanding.
arXiv Detail & Related papers (2024-06-17T04:35:17Z) - Improving Retrieval-Augmented Large Language Models via Data Importance
Learning [27.97176983906107]
We propose an algorithm based on multilinear extension for evaluating the data importance of retrieved data points.
We show that weights based on multilinear extension can be computed efficiently in practice.
arXiv Detail & Related papers (2023-07-06T14:44:07Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
Large language models (LLMs) are notoriously token-hungry during pre-training, and high-quality text data on the web is approaching its scaling limit for LLMs.
We investigate the consequences of repeating pre-training data, revealing that the model is susceptible to overfitting.
Second, we examine the key factors contributing to multi-epoch degradation, finding that significant factors include dataset size, model parameters, and training objectives.
arXiv Detail & Related papers (2023-05-22T17:02:15Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - The Little W-Net That Could: State-of-the-Art Retinal Vessel
Segmentation with Minimalistic Models [19.089445797922316]
We show that a minimalistic version of a standard U-Net with several orders of magnitude less parameters closely approximates the performance of current best techniques.
We also propose a simple extension, dubbed W-Net, which reaches outstanding performance on several popular datasets.
We also test our approach on the Artery/Vein segmentation problem, where we again achieve results well-aligned with the state-of-the-art.
arXiv Detail & Related papers (2020-09-03T19:59:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.