Investigating the Scalability of Approximate Sparse Retrieval Algorithms to Massive Datasets
- URL: http://arxiv.org/abs/2501.11628v1
- Date: Mon, 20 Jan 2025 17:59:21 GMT
- Title: Investigating the Scalability of Approximate Sparse Retrieval Algorithms to Massive Datasets
- Authors: Sebastian Bruch, Franco Maria Nardini, Cosimo Rulli, Rossano Venturini, Leonardo Venuta,
- Abstract summary: We investigate the behavior of state-of-the-art retrieval algorithms on massive datasets.
We compare and contrast the recently-proposed Seismic and graph-based solutions adapted from dense retrieval.
We extensively evaluate Splade embeddings of 138M passages from MsMarco-v2 and report indexing time and other efficiency and effectiveness metrics.
- Score: 8.1990111961557
- License:
- Abstract: Learned sparse text embeddings have gained popularity due to their effectiveness in top-k retrieval and inherent interpretability. Their distributional idiosyncrasies, however, have long hindered their use in real-world retrieval systems. That changed with the recent development of approximate algorithms that leverage the distributional properties of sparse embeddings to speed up retrieval. Nonetheless, in much of the existing literature, evaluation has been limited to datasets with only a few million documents such as MSMARCO. It remains unclear how these systems behave on much larger datasets and what challenges lurk in larger scales. To bridge that gap, we investigate the behavior of state-of-the-art retrieval algorithms on massive datasets. We compare and contrast the recently-proposed Seismic and graph-based solutions adapted from dense retrieval. We extensively evaluate Splade embeddings of 138M passages from MsMarco-v2 and report indexing time and other efficiency and effectiveness metrics.
Related papers
- Retrieval with Learned Similarities [2.729516456192901]
State-of-the-art retrieval algorithms have migrated to learned similarities.
We show that Mixture-of-Logits (MoL) can be realized empirically to achieve superior performance on diverse retrieval scenarios.
arXiv Detail & Related papers (2024-07-22T08:19:34Z) - CANDY: A Benchmark for Continuous Approximate Nearest Neighbor Search with Dynamic Data Ingestion [8.036012885171166]
We introduce CANDY, a benchmark tailored for Continuous Approximate Nearest Neighbor Search with Dynamic Data Ingestion.
CANDY comprehensively assesses a wide range of AKNN algorithms, integrating advanced optimizations such as machine learning-driven inference.
Our evaluations across diverse datasets demonstrate that simpler AKNN baselines often surpass more complex alternatives in terms of recall and latency.
arXiv Detail & Related papers (2024-06-28T04:46:11Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Efficient Inverted Indexes for Approximate Retrieval over Learned Sparse Representations [8.796275989527054]
We propose a novel organization of the inverted index that enables fast retrieval over learned sparse embeddings.
Our approach organizes inverted lists into geometrically-cohesive blocks, each equipped with a summary vector.
Our results indicate that Seismic is one to two orders of magnitude faster than state-of-the-art inverted index-based solutions.
arXiv Detail & Related papers (2024-04-29T15:49:27Z) - Simple Ingredients for Offline Reinforcement Learning [86.1988266277766]
offline reinforcement learning algorithms have proven effective on datasets highly connected to the target downstream task.
We show that existing methods struggle with diverse data: their performance considerably deteriorates as data collected for related but different tasks is simply added to the offline buffer.
We show that scale, more than algorithmic considerations, is the key factor influencing performance.
arXiv Detail & Related papers (2024-03-19T18:57:53Z) - Lexically-Accelerated Dense Retrieval [29.327878974130055]
'LADR' (Lexically-Accelerated Dense Retrieval) is a simple-yet-effective approach that improves the efficiency of existing dense retrieval models.
LADR consistently achieves both precision and recall that are on par with an exhaustive search on standard benchmarks.
arXiv Detail & Related papers (2023-07-31T15:44:26Z) - Large-scale Fully-Unsupervised Re-Identification [78.47108158030213]
We propose two strategies to learn from large-scale unlabeled data.
The first strategy performs a local neighborhood sampling to reduce the dataset size in each without violating neighborhood relationships.
A second strategy leverages a novel Re-Ranking technique, which has a lower time upper bound complexity and reduces the memory complexity from O(n2) to O(kn) with k n.
arXiv Detail & Related papers (2023-07-26T16:19:19Z) - How Does Generative Retrieval Scale to Millions of Passages? [68.98628807288972]
We conduct the first empirical study of generative retrieval techniques across various corpus scales.
We scale generative retrieval to millions of passages with a corpus of 8.8M passages and evaluating model sizes up to 11B parameters.
While generative retrieval is competitive with state-of-the-art dual encoders on small corpora, scaling to millions of passages remains an important and unsolved challenge.
arXiv Detail & Related papers (2023-05-19T17:33:38Z) - Itemset Utility Maximization with Correlation Measure [8.581840054840335]
High utility itemset mining (HUIM) is used to find out interesting but hidden information (e.g., profit and risk)
In this paper, we propose a novel algorithm called the Itemset Utility Maximization with Correlation Measure (CoIUM)
Two upper bounds and four pruning strategies are utilized to effectively prune the search space. And a concise array-based structure named utility-bin is used to calculate and store the adopted upper bounds in linear time and space.
arXiv Detail & Related papers (2022-08-26T10:06:24Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
Autoregressive language models are emerging as the de-facto standard for generating answers.
Previous work has explored ways to partition the search space into hierarchical structures.
In this work we propose an alternative that doesn't force any structure in the search space: using all ngrams in a passage as its possible identifiers.
arXiv Detail & Related papers (2022-04-22T10:45:01Z) - JHU-CROWD++: Large-Scale Crowd Counting Dataset and A Benchmark Method [92.15895515035795]
We introduce a new large scale unconstrained crowd counting dataset (JHU-CROWD++) that contains "4,372" images with "1.51 million" annotations.
We propose a novel crowd counting network that progressively generates crowd density maps via residual error estimation.
arXiv Detail & Related papers (2020-04-07T14:59:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.