A Joint Reconstruction-Triplet Loss Autoencoder Approach Towards Unseen Attack Detection in IoV Networks
- URL: http://arxiv.org/abs/2505.21703v1
- Date: Tue, 27 May 2025 19:40:57 GMT
- Title: A Joint Reconstruction-Triplet Loss Autoencoder Approach Towards Unseen Attack Detection in IoV Networks
- Authors: Julia Boone, Tolunay Seyfi, Fatemeh Afghah,
- Abstract summary: We present an unsupervised autoencoder method trained entirely on benign network data for unseen attack detection in IoV networks.<n>We show that our method performs robustly for all unseen attack types, with roughly 99% accuracy on benign data and between 97% and 100% performance on anomaly data.
- Score: 6.229535970620059
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Internet of Vehicles (IoV) systems, while offering significant advancements in transportation efficiency and safety, introduce substantial security vulnerabilities due to their highly interconnected nature. These dynamic systems produce massive amounts of data between vehicles, infrastructure, and cloud services and present a highly distributed framework with a wide attack surface. In considering network-centered attacks on IoV systems, attacks such as Denial-of-Service (DoS) can prohibit the communication of essential physical traffic safety information between system elements, illustrating that the security concerns for these systems go beyond the traditional confidentiality, integrity, and availability concerns of enterprise systems. Given the complexity and volume of data generated by IoV systems, traditional security mechanisms are often inadequate for accurately detecting sophisticated and evolving cyberattacks. Here, we present an unsupervised autoencoder method trained entirely on benign network data for the purpose of unseen attack detection in IoV networks. We leverage a weighted combination of reconstruction and triplet margin loss to guide the autoencoder training and develop a diverse representation of the benign training set. We conduct extensive experiments on recent network intrusion datasets from two different application domains, industrial IoT and home IoT, that represent the modern IoV task. We show that our method performs robustly for all unseen attack types, with roughly 99% accuracy on benign data and between 97% and 100% performance on anomaly data. We extend these results to show that our model is adaptable through the use of transfer learning, achieving similarly high results while leveraging domain features from one domain to another.
Related papers
- A Scalable Hierarchical Intrusion Detection System for Internet of Vehicles [1.6017263994482716]
Internet of Vehicles (IoV) is prone to various cyber threats, ranging from spoofing and Distributed Denial of Services (DDoS) attacks to malware.<n>To safeguard the IoV ecosystem from intrusions, malicious activities, policy violations, intrusion detection systems (IDS) play a critical role by continuously monitoring and analyzing network traffic to identify and mitigate potential threats in real-time.<n>This paper proposes an effective hierarchical classification framework tailored for IoV networks.
arXiv Detail & Related papers (2025-05-22T04:30:26Z) - Intelligent Detection of Non-Essential IoT Traffic on the Home Gateway [45.70482328441101]
This work presents ML-IoTrim, a system for detecting and mitigating non-essential IoT traffic by analyzing network behavior at the edge.<n>We test our framework in a consumer smart home setup with IoT devices from five categories, demonstrating that the model can accurately identify and block non-essential traffic.<n>This research advances privacy-aware traffic control in smart homes, paving the way for future developments in IoT device privacy.
arXiv Detail & Related papers (2025-04-22T09:40:05Z) - Leveraging Machine Learning Techniques in Intrusion Detection Systems for Internet of Things [11.185300073739098]
Traditional Intrusion Detection Systems (IDS) often fall short in managing the dynamic and large-scale nature of IoT networks.<n>This paper explores how Machine Learning (ML) and Deep Learning (DL) techniques can significantly enhance IDS performance in IoT environments.
arXiv Detail & Related papers (2025-04-09T18:52:15Z) - Fine-Tuning Federated Learning-Based Intrusion Detection Systems for Transportation IoT [0.3333209898517398]
Federated Learning (FL) has emerged as a promising method for enabling the decentralized training of IDS models on distributed edge devices.<n>We propose a hybrid server-edge FL framework that offloads pre-training to a central server while enabling lightweight fine-tuning on edge devices.<n>This approach reduces memory usage by up to 42%, decreases training times by up to 75%, and achieves competitive IDS accuracy of up to 99.2%.
arXiv Detail & Related papers (2025-02-10T02:12:05Z) - Blockchain-Enabled Variational Information Bottleneck for Data
Extraction Based on Mutual Information in Internet of Vehicles [34.63863606532729]
The Internet of Vehicles (IoV) network can address the issue of limited computing resources and data processing capabilities of individual vehicles.
Applying blockchain technology can establish secure data links within the IoV, solving the problems of insufficient computing resources for each vehicle and the security of data transmission over the network.
This paper introduces an innovative approach that integrates blockchain with VIB, referred to as BVIB, designed to lighten computational workloads and reinforce the security of the network.
arXiv Detail & Related papers (2024-09-20T17:30:19Z) - Enhancing IoT Security Against DDoS Attacks through Federated Learning [0.0]
Internet of Things (IoT) has ushered in transformative connectivity between physical devices and the digital realm.
Traditional DDoS mitigation approaches are ill-equipped to handle the intricacies of IoT ecosystems.
This paper introduces an innovative strategy to bolster the security of IoT networks against DDoS attacks by harnessing the power of Federated Learning.
arXiv Detail & Related papers (2024-03-16T16:45:28Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - RL-DistPrivacy: Privacy-Aware Distributed Deep Inference for low latency
IoT systems [41.1371349978643]
We present an approach that targets the security of collaborative deep inference via re-thinking the distribution strategy.
We formulate this methodology, as an optimization, where we establish a trade-off between the latency of co-inference and the privacy-level of data.
arXiv Detail & Related papers (2022-08-27T14:50:00Z) - A Transfer Learning and Optimized CNN Based Intrusion Detection System
for Internet of Vehicles [10.350337750192997]
In this paper, a transfer learning and ensemble learning-based IDS is proposed for Internet of Vehicles (IoV) systems.
The proposed IDS has demonstrated over 99.25% detection rates and F1-scores on two public benchmark IoV security datasets.
This shows the effectiveness of the proposed IDS for cyber-attack detection in both intra-vehicle and external vehicular networks.
arXiv Detail & Related papers (2022-01-27T21:24:09Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
We study the exploitability of Deep Neural Network-based Face Recognition systems.
We show that factors such as skin color, gender, and age, impact the ability to carry out an attack on a specific target victim.
We also study the feasibility of constructing universal attacks that are robust to different poses or views of the attacker's face.
arXiv Detail & Related papers (2020-08-26T19:27:27Z) - Lightweight Collaborative Anomaly Detection for the IoT using Blockchain [40.52854197326305]
Internet of things (IoT) devices tend to have many vulnerabilities which can be exploited by an attacker.
Unsupervised techniques, such as anomaly detection, can be used to secure these devices in a plug-and-protect manner.
We present a distributed IoT simulation platform, which consists of 48 Raspberry Pis.
arXiv Detail & Related papers (2020-06-18T14:50:08Z) - Security of Distributed Machine Learning: A Game-Theoretic Approach to
Design Secure DSVM [31.480769801354413]
This work aims to develop secure distributed algorithms to protect the learning from data poisoning and network attacks.
We establish a game-theoretic framework to capture the conflicting goals of a learner who uses distributed support vector machines (SVMs) and an attacker who is capable of modifying training data and labels.
The numerical results show that distributed SVM is prone to fail in different types of attacks, and their impact has a strong dependence on the network structure and attack capabilities.
arXiv Detail & Related papers (2020-03-08T18:54:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.