Memorization to Generalization: Emergence of Diffusion Models from Associative Memory
- URL: http://arxiv.org/abs/2505.21777v2
- Date: Fri, 20 Jun 2025 19:20:01 GMT
- Title: Memorization to Generalization: Emergence of Diffusion Models from Associative Memory
- Authors: Bao Pham, Gabriel Raya, Matteo Negri, Mohammed J. Zaki, Luca Ambrogioni, Dmitry Krotov,
- Abstract summary: We study the memorization-generalization phenomenon in diffusion models via the lens of AMs.<n>Our findings provide: a novel perspective on the memorization-generalization phenomenon in diffusion models via the lens of AMs.
- Score: 27.677278702224687
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hopfield networks are associative memory (AM) systems, designed for storing and retrieving patterns as local minima of an energy landscape. In the classical Hopfield model, an interesting phenomenon occurs when the amount of training data reaches its critical memory load $- spurious\,\,states$, or unintended stable points, emerge at the end of the retrieval dynamics, leading to incorrect recall. In this work, we examine diffusion models, commonly used in generative modeling, from the perspective of AMs. The training phase of diffusion model is conceptualized as memory encoding (training data is stored in the memory). The generation phase is viewed as an attempt of memory retrieval. In the small data regime the diffusion model exhibits a strong memorization phase, where the network creates distinct basins of attraction around each sample in the training set, akin to the Hopfield model below the critical memory load. In the large data regime, a different phase appears where an increase in the size of the training set fosters the creation of new attractor states that correspond to manifolds of the generated samples. Spurious states appear at the boundary of this transition and correspond to emergent attractor states, which are absent in the training set, but, at the same time, have distinct basins of attraction around them. Our findings provide: a novel perspective on the memorization-generalization phenomenon in diffusion models via the lens of AMs, theoretical prediction of existence of spurious states, empirical validation of this prediction in commonly-used diffusion models.
Related papers
- Diffusion models under low-noise regime [3.729242965449096]
We show that diffusion models are effective denoisers when the corruption level is small.<n>We quantify how training set size, data geometry, and model objective choice shape denoising trajectories.<n>This work starts to address gaps in our understanding of generative model reliability in practical applications.
arXiv Detail & Related papers (2025-06-09T15:07:16Z) - Overcoming Dimensional Factorization Limits in Discrete Diffusion Models through Quantum Joint Distribution Learning [79.65014491424151]
We propose a quantum Discrete Denoising Diffusion Probabilistic Model (QD3PM)<n>It enables joint probability learning through diffusion and denoising in exponentially large Hilbert spaces.<n>This paper establishes a new theoretical paradigm in generative models by leveraging the quantum advantage in joint distribution learning.
arXiv Detail & Related papers (2025-05-08T11:48:21Z) - Resolving Memorization in Empirical Diffusion Model for Manifold Data in High-Dimensional Spaces [5.716752583983991]
When the data distribution consists of n points, empirical diffusion models tend to reproduce existing data points.<n>This work shows that the memorization issue can be solved simply by applying an inertia update at the end of the empirical diffusion simulation.<n>We demonstrate that the distribution of samples from this model approximates the true data distribution on a $C2$ manifold of dimension $d$, within a Wasserstein-1 distance of order $O(n-frac2d+4)$.
arXiv Detail & Related papers (2025-05-05T09:40:41Z) - One-for-More: Continual Diffusion Model for Anomaly Detection [63.50488826645681]
Anomaly detection methods utilize diffusion models to generate or reconstruct normal samples when given arbitrary anomaly images.<n>Our study found that the diffusion model suffers from severe faithfulness hallucination'' and catastrophic forgetting''<n>We propose a continual diffusion model that uses gradient projection to achieve stable continual learning.
arXiv Detail & Related papers (2025-02-27T07:47:27Z) - A solvable generative model with a linear, one-step denoiser [0.0]
We develop an analytically tractable single-step diffusion model based on a linear denoiser.<n>We show that the monotonic fall phase of Kullback-Leibler divergence begins when the training dataset size reaches the dimension of the data points.
arXiv Detail & Related papers (2024-11-26T19:00:01Z) - Understanding Generalizability of Diffusion Models Requires Rethinking the Hidden Gaussian Structure [8.320632531909682]
We study the generalizability of diffusion models by looking into the hidden properties of the learned score functions.<n>As diffusion models transition from memorization to generalization, their corresponding nonlinear diffusion denoisers exhibit increasing linearity.
arXiv Detail & Related papers (2024-10-31T15:57:04Z) - Causal Estimation of Memorisation Profiles [58.20086589761273]
Understanding memorisation in language models has practical and societal implications.
Memorisation is the causal effect of training with an instance on the model's ability to predict that instance.
This paper proposes a new, principled, and efficient method to estimate memorisation based on the difference-in-differences design from econometrics.
arXiv Detail & Related papers (2024-06-06T17:59:09Z) - A Phase Transition in Diffusion Models Reveals the Hierarchical Nature of Data [51.03144354630136]
Recent advancements show that diffusion models can generate high-quality images.<n>We study this phenomenon in a hierarchical generative model of data.<n>We find that the backward diffusion process acting after a time $t$ is governed by a phase transition.
arXiv Detail & Related papers (2024-02-26T19:52:33Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - On Memorization in Diffusion Models [44.031805633114985]
We show that memorization behaviors tend to occur on smaller-sized datasets.<n>We quantify the impact of the influential factors on these memorization behaviors in terms of effective model memorization (EMM)<n>Our study holds practical significance for diffusion model users and offers clues to theoretical research in deep generative models.
arXiv Detail & Related papers (2023-10-04T09:04:20Z) - In search of dispersed memories: Generative diffusion models are
associative memory networks [6.4322891559626125]
Generative diffusion models are a type of generative machine learning techniques that have shown great performance in many tasks.
We show that generative diffusion models can be interpreted as energy-based models and that, when trained on discrete patterns, their energy function is identical to that of modern Hopfield networks.
This equivalence allows us to interpret the supervised training of diffusion models as a synaptic learning process that encodes the associative dynamics of a modern Hopfield network in the weight structure of a deep neural network.
arXiv Detail & Related papers (2023-09-29T14:48:24Z) - Diffusion Models in Vision: A Survey [73.10116197883303]
A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage.<n> Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens.
arXiv Detail & Related papers (2022-09-10T22:00:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.