Diffusion models under low-noise regime
- URL: http://arxiv.org/abs/2506.07841v1
- Date: Mon, 09 Jun 2025 15:07:16 GMT
- Title: Diffusion models under low-noise regime
- Authors: Elizabeth Pavlova, Xue-Xin Wei,
- Abstract summary: We show that diffusion models are effective denoisers when the corruption level is small.<n>We quantify how training set size, data geometry, and model objective choice shape denoising trajectories.<n>This work starts to address gaps in our understanding of generative model reliability in practical applications.
- Score: 3.729242965449096
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work on diffusion models proposed that they operate in two regimes: memorization, in which models reproduce their training data, and generalization, in which they generate novel samples. While this has been tested in high-noise settings, the behavior of diffusion models as effective denoisers when the corruption level is small remains unclear. To address this gap, we systematically investigated the behavior of diffusion models under low-noise diffusion dynamics, with implications for model robustness and interpretability. Using (i) CelebA subsets of varying sample sizes and (ii) analytic Gaussian mixture benchmarks, we reveal that models trained on disjoint data diverge near the data manifold even when their high-noise outputs converge. We quantify how training set size, data geometry, and model objective choice shape denoising trajectories and affect score accuracy, providing insights into how these models actually learn representations of data distributions. This work starts to address gaps in our understanding of generative model reliability in practical applications where small perturbations are common.
Related papers
- Consistent World Models via Foresight Diffusion [56.45012929930605]
We argue that a key bottleneck in learning consistent diffusion-based world models lies in the suboptimal predictive ability.<n>We propose Foresight Diffusion (ForeDiff), a diffusion-based world modeling framework that enhances consistency by decoupling condition understanding from target denoising.
arXiv Detail & Related papers (2025-05-22T10:01:59Z) - Critical Iterative Denoising: A Discrete Generative Model Applied to Graphs [52.50288418639075]
We propose a novel framework called Iterative Denoising, which simplifies discrete diffusion and circumvents the issue by assuming conditional independence across time.<n>Our empirical evaluations demonstrate that the proposed method significantly outperforms existing discrete diffusion baselines in graph generation tasks.
arXiv Detail & Related papers (2025-03-27T15:08:58Z) - Continuous Diffusion Model for Language Modeling [57.396578974401734]
Existing continuous diffusion models for discrete data have limited performance compared to discrete approaches.<n>We propose a continuous diffusion model for language modeling that incorporates the geometry of the underlying categorical distribution.
arXiv Detail & Related papers (2025-02-17T08:54:29Z) - Generalized Diffusion Model with Adjusted Offset Noise [1.7767466724342067]
We propose a generalized diffusion model that naturally incorporates additional noise within a rigorous probabilistic framework.<n>We derive a loss function based on the evidence lower bound, establishing its theoretical equivalence to offset noise with certain adjustments.<n>Experiments on synthetic datasets demonstrate that our model effectively addresses brightness-related challenges and outperforms conventional methods in high-dimensional scenarios.
arXiv Detail & Related papers (2024-12-04T08:57:03Z) - Understanding Generalizability of Diffusion Models Requires Rethinking the Hidden Gaussian Structure [8.320632531909682]
We study the generalizability of diffusion models by looking into the hidden properties of the learned score functions.<n>As diffusion models transition from memorization to generalization, their corresponding nonlinear diffusion denoisers exhibit increasing linearity.
arXiv Detail & Related papers (2024-10-31T15:57:04Z) - Diffusion Models Learn Low-Dimensional Distributions via Subspace Clustering [15.326641037243006]
diffusion models can effectively learn the image distribution and generate new samples.<n>We provide theoretical insights into this phenomenon by leveraging key empirical observations.<n>We show that the minimal number of samples required to learn the underlying distribution scales linearly with the intrinsic dimensions.
arXiv Detail & Related papers (2024-09-04T04:14:02Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
Diffusion processes are prone to generating samples that reflect biases in a training dataset.
We develop constrained diffusion models by imposing diffusion constraints based on desired distributions.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved.
This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem.
arXiv Detail & Related papers (2024-06-23T20:34:18Z) - Latent diffusion models for parameterization and data assimilation of facies-based geomodels [0.0]
Diffusion models are trained to generate new geological realizations from input fields characterized by random noise.
Latent diffusion models are shown to provide realizations that are visually consistent with samples from geomodeling software.
arXiv Detail & Related papers (2024-06-21T01:32:03Z) - The Emergence of Reproducibility and Generalizability in Diffusion Models [10.188731323681575]
Given the same starting noise input and a deterministic sampler, different diffusion models often yield remarkably similar outputs.
We show that diffusion models are learning distinct distributions affected by the training data size.
This valuable property generalizes to many variants of diffusion models, including those for conditional use, solving inverse problems, and model fine-tuning.
arXiv Detail & Related papers (2023-10-08T19:02:46Z) - Diffusion Models in Vision: A Survey [73.10116197883303]
A diffusion model is a deep generative model that is based on two stages, a forward diffusion stage and a reverse diffusion stage.<n> Diffusion models are widely appreciated for the quality and diversity of the generated samples, despite their known computational burdens.
arXiv Detail & Related papers (2022-09-10T22:00:30Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.