Events and their Localisation are Relative to a Lab
- URL: http://arxiv.org/abs/2505.21797v1
- Date: Tue, 27 May 2025 22:05:59 GMT
- Title: Events and their Localisation are Relative to a Lab
- Authors: V. Vilasini, Lin-Qing Chen, Liuhang Ye, Renato Renner,
- Abstract summary: We propose an operational approach drawing from quantum information to define events and their localisation relative to a Lab.<n>We apply this to analyse the quantum switch (QS), a process widely associated with indefinite causal order.
- Score: 2.215989366460763
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The notions of events and their localisation fundamentally differ between quantum theory and general relativity, reconciling them becomes even more important and challenging in the context of quantum gravity where a classical spacetime background can no longer be assumed. We therefore propose an operational approach drawing from quantum information, to define events and their localisation relative to a Lab, which in particular includes a choice of physical degree of freedom (the reference) providing a generalised notion of "location". We define a property of the reference, relative measurability, that is sensitive to correlations between the Lab's reference and objects of study. Applying this proposal to analyse the quantum switch (QS), a process widely associated with indefinite causal order, we uncover differences between classical and quantum spacetime realisations of QS, rooted in the relative measurability of the associated references and possibilities for agents' interventions. Our analysis also clarifies a longstanding debate on the interpretation of QS experiments, demonstrating how different conclusions stem from distinct assumptions on the Labs. This provides a foundation for a more unified view of events, localisation, and causality across quantum and relativistic domains.
Related papers
- Experimental Test of Nonlocality Limits from Relativistic Independence [0.0]
We show the existence of a fundamental limit on the extent of quantum correlations.<n>Our results shed light on the profound role of uncertainty in both enabling and balancing them.
arXiv Detail & Related papers (2025-01-10T23:29:00Z) - Does Quantum Information Require Additional Structure? [0.0]
We introduce the hypothesis of quantum space of directly unobserved relations, which precede quantum correlations, and are compatible with the Reichenbach common cause principle.<n>We present the Chyli'nski model as an example of quantum relational space continuum, which predicts potentially measurable effects for the bound states.
arXiv Detail & Related papers (2024-08-20T20:39:20Z) - Quantum reference frames, revisited [0.0]
We point out potential inconsistencies in the mainstream approach to this subject.
We reject the notion that transformations between QRFs can be represented by unitary operators.
An experimental protocol, capable of empirically distinguishing between competing definitions of the term, is also proposed.
arXiv Detail & Related papers (2023-12-06T18:15:52Z) - Engineering Transport via Collisional Noise: a Toolbox for Biology
Systems [44.99833362998488]
We study a generalised XXZ model in the presence of collision noise, which allows to describe environments beyond the standard Markovian formulation.
Results constitute an example of the essential building blocks for the understanding of quantum transport in noisy and warm disordered environments.
arXiv Detail & Related papers (2023-11-15T12:55:28Z) - Quantification of Entanglement and Coherence with Purity Detection [16.01598003770752]
Entanglement and coherence are fundamental properties of quantum systems, promising to power near future quantum technologies.
Here, we demonstrate quantitative bounds to operationally useful entanglement and coherence.
Our research offers an efficient means of verifying large-scale quantum information processing.
arXiv Detail & Related papers (2023-08-14T11:03:40Z) - Complete characterization of quantum correlations by randomized
measurements [0.832184180529969]
We provide a method to measure any locally invariant property of quantum states using locally randomized measurements.
We implement these methods experimentally using pairs of entangled photons, characterizing their usefulness for quantum teleportation.
Our results can be applied to various quantum computing platforms, allowing simple analysis of correlations between arbitrary distant qubits.
arXiv Detail & Related papers (2022-12-15T15:22:28Z) - Physical interpretation of nonlocal quantum correlation through local
description of subsystems [19.542805787744133]
We propose the physical interpretation of nonlocal quantum correlation between two systems.
Different nonlocal quantum correlations can be discriminated from a single uncertainty relation derived under local hidden state (LHS)-LHS model only.
arXiv Detail & Related papers (2022-10-01T10:13:40Z) - Connecting Commutativity and Classicality for Multi-Time Quantum
Processes [0.0]
We focus on the relationship between Kolmogorov consistency of measurement statistics and the commutativity of measurement operators.
On the other hand, commutativity of measurement operators is a structural property that holds in classical physics.
We detail their implications for memoryless multi-time quantum processes.
arXiv Detail & Related papers (2022-04-25T14:41:08Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Experimental progress on quantum coherence: detection, quantification,
and manipulation [55.41644538483948]
Recently there has been significant interest in the characterization of quantum coherence as a resource.
We discuss the main platforms for realizing the experiments: linear optics, nuclear magnetic resonance, and superconducting systems.
We also review experiments exploring the connections between coherence and uncertainty relations, path information, and coherence of operations and measurements.
arXiv Detail & Related papers (2021-05-14T14:30:47Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.