Optimizing Data Augmentation through Bayesian Model Selection
- URL: http://arxiv.org/abs/2505.21813v1
- Date: Tue, 27 May 2025 22:44:36 GMT
- Title: Optimizing Data Augmentation through Bayesian Model Selection
- Authors: Madi Matymov, Ba-Hien Tran, Michael Kampffmeyer, Markus Heinonen, Maurizio Filippone,
- Abstract summary: We propose a novel framework for optimizing Data Augmentation (DA)<n>We take a probabilistic view of DA, which leads to the interpretation of augmentation parameters as model (hyper)- parameters.<n>We derive a tractable Evidence Lower BOund (ELBO) which allows us to optimize augmentation parameters jointly with model parameters.
- Score: 23.92102364966058
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data Augmentation (DA) has become an essential tool to improve robustness and generalization of modern machine learning. However, when deciding on DA strategies it is critical to choose parameters carefully, and this can be a daunting task which is traditionally left to trial-and-error or expensive optimization based on validation performance. In this paper, we counter these limitations by proposing a novel framework for optimizing DA. In particular, we take a probabilistic view of DA, which leads to the interpretation of augmentation parameters as model (hyper)-parameters, and the optimization of the marginal likelihood with respect to these parameters as a Bayesian model selection problem. Due to its intractability, we derive a tractable Evidence Lower BOund (ELBO), which allows us to optimize augmentation parameters jointly with model parameters. We provide extensive theoretical results on variational approximation quality, generalization guarantees, invariance properties, and connections to empirical Bayes. Through experiments on computer vision tasks, we show that our approach improves calibration and yields robust performance over fixed or no augmentation. Our work provides a rigorous foundation for optimizing DA through Bayesian principles with significant potential for robust machine learning.
Related papers
- Tuning for Trustworthiness -- Balancing Performance and Explanation Consistency in Neural Network Optimization [49.567092222782435]
We introduce the novel concept of XAI consistency, defined as the agreement among different feature attribution methods.<n>We create a multi-objective optimization framework that balances predictive performance with explanation.<n>Our research provides a foundation for future investigations into whether models from the trade-off zone-balancing performance loss and XAI consistency-exhibit greater robustness.
arXiv Detail & Related papers (2025-05-12T13:19:14Z) - Bayesian Experimental Design for Model Discrepancy Calibration: An Auto-Differentiable Ensemble Kalman Inversion Approach [0.0]
We propose a hybrid BED framework enabled by auto-differentiable ensemble Kalman inversion (AD-EKI)<n>We iteratively optimize experimental designs, decoupling the inference of low-dimensional physical parameters handled by standard BED methods.<n>The proposed method is studied by a classical convection-diffusion BED example.
arXiv Detail & Related papers (2025-04-29T00:10:45Z) - Efficient Source-Free Time-Series Adaptation via Parameter Subspace Disentanglement [0.7558576228782637]
We propose a framework for efficient Source-Free Domain Adaptation (SFDA)<n>Our approach introduces an improved paradigm for source-model preparation and target-side adaptation.<n>We demonstrate that our framework is compatible with various SFDA methods and achieves significant computational efficiency.
arXiv Detail & Related papers (2024-10-03T02:12:03Z) - Scaling Exponents Across Parameterizations and Optimizers [94.54718325264218]
We propose a new perspective on parameterization by investigating a key assumption in prior work.
Our empirical investigation includes tens of thousands of models trained with all combinations of threes.
We find that the best learning rate scaling prescription would often have been excluded by the assumptions in prior work.
arXiv Detail & Related papers (2024-07-08T12:32:51Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Functional Graphical Models: Structure Enables Offline Data-Driven Optimization [111.28605744661638]
We show how structure can enable sample-efficient data-driven optimization.
We also present a data-driven optimization algorithm that infers the FGM structure itself.
arXiv Detail & Related papers (2024-01-08T22:33:14Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Design Amortization for Bayesian Optimal Experimental Design [70.13948372218849]
We build off of successful variational approaches, which optimize a parameterized variational model with respect to bounds on the expected information gain (EIG)
We present a novel neural architecture that allows experimenters to optimize a single variational model that can estimate the EIG for potentially infinitely many designs.
arXiv Detail & Related papers (2022-10-07T02:12:34Z) - Pre-trained Gaussian Processes for Bayesian Optimization [24.730678780782647]
We propose a new pre-training based BO framework named HyperBO.
We show bounded posterior predictions and near-zero regrets for HyperBO without assuming the "ground truth" GP prior is known.
arXiv Detail & Related papers (2021-09-16T20:46:26Z) - Approximate Bayesian Optimisation for Neural Networks [6.921210544516486]
A body of work has been done to automate machine learning algorithm to highlight the importance of model choice.
The necessity to solve the analytical tractability and the computational feasibility in a idealistic fashion enables to ensure the efficiency and the applicability.
arXiv Detail & Related papers (2021-08-27T19:03:32Z) - Model Selection for Bayesian Autoencoders [25.619565817793422]
We propose to optimize the distributional sliced-Wasserstein distance between the output of the autoencoder and the empirical data distribution.
We turn our BAE into a generative model by fitting a flexible Dirichlet mixture model in the latent space.
We evaluate our approach qualitatively and quantitatively using a vast experimental campaign on a number of unsupervised learning tasks and show that, in small-data regimes where priors matter, our approach provides state-of-the-art results.
arXiv Detail & Related papers (2021-06-11T08:55:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.