Spectral clustering for dependent community Hawkes process models of temporal networks
- URL: http://arxiv.org/abs/2505.21845v1
- Date: Wed, 28 May 2025 00:25:10 GMT
- Title: Spectral clustering for dependent community Hawkes process models of temporal networks
- Authors: Lingfei Zhao, Hadeel Soliman, Kevin S. Xu, Subhadeep Paul,
- Abstract summary: temporal networks often exhibit community structure and strong dependence patterns among node pairs.<n>We provide statistical results for a class of models that we call dependent community Hawkes (DCH) models.<n>We derive a non-asymptotic upper bound on the misclustering error of spectral clustering on the event count matrix.
- Score: 4.574830585715128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Temporal networks observed continuously over time through timestamped relational events data are commonly encountered in application settings including online social media communications, financial transactions, and international relations. Temporal networks often exhibit community structure and strong dependence patterns among node pairs. This dependence can be modeled through mutual excitations, where an interaction event from a sender to a receiver node increases the possibility of future events among other node pairs. We provide statistical results for a class of models that we call dependent community Hawkes (DCH) models, which combine the stochastic block model with mutually exciting Hawkes processes for modeling both community structure and dependence among node pairs, respectively. We derive a non-asymptotic upper bound on the misclustering error of spectral clustering on the event count matrix as a function of the number of nodes and communities, time duration, and the amount of dependence in the model. Our result leverages recent results on bounding an appropriate distance between a multivariate Hawkes process count vector and a Gaussian vector, along with results from random matrix theory. We also propose a DCH model that incorporates only self and reciprocal excitation along with highly scalable parameter estimation using a Generalized Method of Moments (GMM) estimator that we demonstrate to be consistent for growing network size and time duration.
Related papers
- Multi-Scale Spatial-Temporal Self-Attention Graph Convolutional Networks for Skeleton-based Action Recognition [0.0]
In this paper, we propose self-attention GCN hybrid model, Multi-Scale Spatial-Temporal self-attention (MSST)-GCN.
We utilize spatial self-attention module with adaptive topology to understand intra-frame interactions within a frame among different body parts, and temporal self-attention module to examine correlations between frames of a node.
arXiv Detail & Related papers (2024-04-03T10:25:45Z) - Hierarchical Joint Graph Learning and Multivariate Time Series
Forecasting [0.16492989697868887]
We introduce a method of representing multivariate signals as nodes in a graph with edges indicating interdependency between them.
We leverage graph neural networks (GNN) and attention mechanisms to efficiently learn the underlying relationships within the time series data.
The effectiveness of our proposed model is evaluated across various real-world benchmark datasets designed for long-term forecasting tasks.
arXiv Detail & Related papers (2023-11-21T14:24:21Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - Continuous-time convolutions model of event sequences [46.3471121117337]
Event sequences are non-uniform and sparse, making traditional models unsuitable.
We propose COTIC, a method based on an efficient convolution neural network designed to handle the non-uniform occurrence of events over time.
COTIC outperforms existing models in predicting the next event time and type, achieving an average rank of 1.5 compared to 3.714 for the nearest competitor.
arXiv Detail & Related papers (2023-02-13T10:34:51Z) - A Mutually Exciting Latent Space Hawkes Process Model for
Continuous-time Networks [3.883893461313154]
We propose a novel generative model for continuous-time networks of relational events using a latent space representation for nodes.
We show that our proposed LSH model can replicate many features observed in real temporal networks including reciprocity and transitivity.
arXiv Detail & Related papers (2022-05-19T00:56:12Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - The Multivariate Community Hawkes Model for Dependent Relational Events
in Continuous-time Networks [3.55528500800612]
The block model (SBM) is one of the most widely used generative models for network data.
We propose the multivariate community Hawkes (MULCH) model, an extremely flexible community-based model for continuous-time networks.
We find that our proposed MULCH model is far more accurate than existing models both for predictive and predictive generative tasks.
arXiv Detail & Related papers (2022-05-02T04:08:44Z) - Event2Graph: Event-driven Bipartite Graph for Multivariate Time-series
Anomaly Detection [25.832983667044708]
We propose a dynamic bipartite graph structure to encode the inter-dependencies between time-series.
Based on this design, relations between time series can be explicitly modelled via dynamic connections to event nodes.
arXiv Detail & Related papers (2021-08-15T17:50:37Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
We propose Variational Synergetic Multi-Horizon Network (VSMHN), a novel deep conditional generative model.
To learn complex correlations across heterogeneous sequences, a tailored encoder is devised to combine the advances in deep point processes models and variational recurrent neural networks.
Our model can be trained effectively using variational inference and generates predictions with Monte-Carlo simulation.
arXiv Detail & Related papers (2021-01-31T11:00:55Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.