Incorporating LLMs for Large-Scale Urban Complex Mobility Simulation
- URL: http://arxiv.org/abs/2505.21880v2
- Date: Thu, 03 Jul 2025 06:38:34 GMT
- Title: Incorporating LLMs for Large-Scale Urban Complex Mobility Simulation
- Authors: Yu-Lun Song, Chung-En Tsern, Che-Cheng Wu, Yu-Ming Chang, Syuan-Bo Huang, Wei-Chu Chen, Michael Chia-Liang Lin, Yu-Ta Lin,
- Abstract summary: This study presents an innovative approach to urban mobility simulation by integrating a Large Language Model (LLM) with Agent-Based Modeling (ABM)<n>Unlike traditional rule-based ABM, the proposed framework leverages LLM to enhance agent diversity and realism.<n>Using real-world data, the simulation models individual behaviors and large-scale mobility patterns in Taipei City.
- Score: 0.04517077427559345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study presents an innovative approach to urban mobility simulation by integrating a Large Language Model (LLM) with Agent-Based Modeling (ABM). Unlike traditional rule-based ABM, the proposed framework leverages LLM to enhance agent diversity and realism by generating synthetic population profiles, allocating routine and occasional locations, and simulating personalized routes. Using real-world data, the simulation models individual behaviors and large-scale mobility patterns in Taipei City. Key insights, such as route heat maps and mode-specific indicators, provide urban planners with actionable information for policy-making. Future work focuses on establishing robust validation frameworks to ensure accuracy and reliability in urban planning applications.
Related papers
- SimuRA: Towards General Goal-Oriented Agent via Simulative Reasoning Architecture with LLM-Based World Model [88.04128601981145]
We introduce SimuRA, a goal-oriented architecture for generalized agentic reasoning.<n>modelname overcomes the limitations of autoregressive reasoning by introducing a world model for planning via simulation.<n>World-model-based planning, in particular, shows consistent advantage of up to 124% over autoregressive planning.
arXiv Detail & Related papers (2025-07-31T17:57:20Z) - CAMS: A CityGPT-Powered Agentic Framework for Urban Human Mobility Simulation [9.907406552578607]
textbfCAMS is an agentic framework that leverages the language based urban foundation model to simulate human mobility in urban space.<n>textbfCAMS achieves superior performance without relying on externally provided geospatial information.
arXiv Detail & Related papers (2025-06-16T15:24:07Z) - Plan Your Travel and Travel with Your Plan: Wide-Horizon Planning and Evaluation via LLM [58.50687282180444]
Travel planning is a complex task requiring the integration of diverse real-world information and user preferences.<n>We formulate this as an $L3$ planning problem, emphasizing long context, long instruction, and long output.<n>We introduce Multiple Aspects of Planning (MAoP), enabling LLMs to conduct wide-horizon thinking to solve complex planning problems.
arXiv Detail & Related papers (2025-06-14T09:37:59Z) - MF-LLM: Simulating Population Decision Dynamics via a Mean-Field Large Language Model Framework [53.82097200295448]
Mean-Field LLM (MF-LLM) is first to incorporate mean field theory into social simulation.<n>MF-LLM models bidirectional interactions between individuals and the population through an iterative process.<n> IB-Tune is a novel fine-tuning method inspired by the Information Bottleneck principle.
arXiv Detail & Related papers (2025-04-30T12:41:51Z) - MobileCity: An Efficient Framework for Large-Scale Urban Behavior Simulation [22.340422693575547]
We present MobileCity, a lightweight simulation platform designed to model realistic urban mobility with high computational efficiency.<n>We introduce a comprehensive transportation system with multiple transport modes, and collect questionnaire data from respondents to construct agent profiles.<n>To enable scalable simulation, agents perform action selection within a pre-generated action space and uses local models for efficient agent memory generation.
arXiv Detail & Related papers (2025-04-18T07:01:05Z) - TrajLLM: A Modular LLM-Enhanced Agent-Based Framework for Realistic Human Trajectory Simulation [3.8106509573548286]
This work leverages Large Language Models (LLMs) to simulate human mobility, addressing challenges like high costs and privacy concerns in traditional models.<n>Our hierarchical framework integrates persona generation, activity selection, and destination prediction, using real-world demographic and psychological data.
arXiv Detail & Related papers (2025-02-26T00:13:26Z) - Modeling and Simulating Agent-Based City Migration Using Conway's Game of Life [2.9312156642007294]
We propose and implement a novel GoL-based framework to simulate urban migration dynamics.<n>Using a grid-within-a-grid approach, our approach encodes probabilistic tendencies for out-migration due to densification and sparsification.<n>Our framework offers a versatile and computationally efficient tool for studying urban migration patterns, contributing to the broader application of ABMs in computational urban social science.
arXiv Detail & Related papers (2024-12-30T03:59:30Z) - Large Language Models as Urban Residents: An LLM Agent Framework for Personal Mobility Generation [19.566466895173924]
This paper introduces a novel approach using Large Language Models (LLMs) integrated into an agent framework for personal mobility generation.
Our approach addresses three research questions: aligning LLMs with real-world urban mobility data, developing reliable activity generation strategies, and exploring LLM applications in urban mobility.
arXiv Detail & Related papers (2024-02-22T18:03:14Z) - Reinforcement Learning with Human Feedback for Realistic Traffic
Simulation [53.85002640149283]
Key element of effective simulation is the incorporation of realistic traffic models that align with human knowledge.
This study identifies two main challenges: capturing the nuances of human preferences on realism and the unification of diverse traffic simulation models.
arXiv Detail & Related papers (2023-09-01T19:29:53Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Evaluating model-based planning and planner amortization for continuous
control [79.49319308600228]
We take a hybrid approach, combining model predictive control (MPC) with a learned model and model-free policy learning.
We find that well-tuned model-free agents are strong baselines even for high DoF control problems.
We show that it is possible to distil a model-based planner into a policy that amortizes the planning without any loss of performance.
arXiv Detail & Related papers (2021-10-07T12:00:40Z) - TrafficSim: Learning to Simulate Realistic Multi-Agent Behaviors [74.67698916175614]
We propose TrafficSim, a multi-agent behavior model for realistic traffic simulation.
In particular, we leverage an implicit latent variable model to parameterize a joint actor policy.
We show TrafficSim generates significantly more realistic and diverse traffic scenarios as compared to a diverse set of baselines.
arXiv Detail & Related papers (2021-01-17T00:29:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.