Learning Compositional Behaviors from Demonstration and Language
- URL: http://arxiv.org/abs/2505.21981v1
- Date: Wed, 28 May 2025 05:19:59 GMT
- Title: Learning Compositional Behaviors from Demonstration and Language
- Authors: Weiyu Liu, Neil Nie, Ruohan Zhang, Jiayuan Mao, Jiajun Wu,
- Abstract summary: BLADE is a framework for long-horizon robotic manipulation by integrating imitation learning and model-based planning.<n>We show significant capabilities in generalizing to novel situations, including novel initial states, external state perturbations, and novel goals.
- Score: 28.352574199884852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Behavior from Language and Demonstration (BLADE), a framework for long-horizon robotic manipulation by integrating imitation learning and model-based planning. BLADE leverages language-annotated demonstrations, extracts abstract action knowledge from large language models (LLMs), and constructs a library of structured, high-level action representations. These representations include preconditions and effects grounded in visual perception for each high-level action, along with corresponding controllers implemented as neural network-based policies. BLADE can recover such structured representations automatically, without manually labeled states or symbolic definitions. BLADE shows significant capabilities in generalizing to novel situations, including novel initial states, external state perturbations, and novel goals. We validate the effectiveness of our approach both in simulation and on real robots with a diverse set of objects with articulated parts, partial observability, and geometric constraints.
Related papers
- Improving Generalization of Language-Conditioned Robot Manipulation [29.405161073483175]
We present a framework that learns object-arrangement tasks from just a few demonstrations.<n>We validate our method on both simulation and real-world robotic environments.
arXiv Detail & Related papers (2025-08-04T13:29:26Z) - Flex: End-to-End Text-Instructed Visual Navigation from Foundation Model Features [59.892436892964376]
We investigate the minimal data requirements and architectural adaptations necessary to achieve robust closed-loop performance with vision-based control policies.<n>Our findings are synthesized in Flex (Fly lexically), a framework that uses pre-trained Vision Language Models (VLMs) as frozen patch-wise feature extractors.<n>We demonstrate the effectiveness of this approach on a quadrotor fly-to-target task, where agents trained via behavior cloning successfully generalize to real-world scenes.
arXiv Detail & Related papers (2024-10-16T19:59:31Z) - LangSuitE: Planning, Controlling and Interacting with Large Language Models in Embodied Text Environments [70.91258869156353]
We introduce LangSuitE, a versatile and simulation-free testbed featuring 6 representative embodied tasks in textual embodied worlds.
Compared with previous LLM-based testbeds, LangSuitE offers adaptability to diverse environments without multiple simulation engines.
We devise a novel chain-of-thought (CoT) schema, EmMem, which summarizes embodied states w.r.t. history information.
arXiv Detail & Related papers (2024-06-24T03:36:29Z) - Grounding Language Plans in Demonstrations Through Counterfactual Perturbations [25.19071357445557]
Grounding the common-sense reasoning of Large Language Models (LLMs) in physical domains remains a pivotal yet unsolved problem for embodied AI.
We show our approach improves the interpretability and reactivity of imitation learning through 2D navigation and simulated and real robot manipulation tasks.
arXiv Detail & Related papers (2024-03-25T19:04:59Z) - Learning with Language-Guided State Abstractions [58.199148890064826]
Generalizable policy learning in high-dimensional observation spaces is facilitated by well-designed state representations.
Our method, LGA, uses a combination of natural language supervision and background knowledge from language models to automatically build state representations tailored to unseen tasks.
Experiments on simulated robotic tasks show that LGA yields state abstractions similar to those designed by humans, but in a fraction of the time.
arXiv Detail & Related papers (2024-02-28T23:57:04Z) - MEIA: Multimodal Embodied Perception and Interaction in Unknown Environments [82.67236400004826]
We introduce the Multimodal Embodied Interactive Agent (MEIA), capable of translating high-level tasks expressed in natural language into a sequence of executable actions.
MEM module enables MEIA to generate executable action plans based on diverse requirements and the robot's capabilities.
arXiv Detail & Related papers (2024-02-01T02:43:20Z) - Object-Centric Instruction Augmentation for Robotic Manipulation [29.491990994901666]
We introduce the textitObject-Centric Instruction Augmentation (OCI) framework to augment highly semantic and information-dense language instruction with position cues.
We utilize a Multi-modal Large Language Model (MLLM) to weave knowledge of object locations into natural language instruction.
We demonstrate that robotic manipulator imitation policies trained with our enhanced instructions outperform those relying solely on traditional language instructions.
arXiv Detail & Related papers (2024-01-05T13:54:45Z) - LanGWM: Language Grounded World Model [24.86620763902546]
We focus on learning language-grounded visual features to enhance the world model learning.
Our proposed technique of explicit language-grounded visual representation learning has the potential to improve models for human-robot interaction.
arXiv Detail & Related papers (2023-11-29T12:41:55Z) - RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic
Control [140.48218261864153]
We study how vision-language models trained on Internet-scale data can be incorporated directly into end-to-end robotic control.
Our approach leads to performant robotic policies and enables RT-2 to obtain a range of emergent capabilities from Internet-scale training.
arXiv Detail & Related papers (2023-07-28T21:18:02Z) - Pre-Trained Language Models for Interactive Decision-Making [72.77825666035203]
We describe a framework for imitation learning in which goals and observations are represented as a sequence of embeddings.
We demonstrate that this framework enables effective generalization across different environments.
For test tasks involving novel goals or novel scenes, initializing policies with language models improves task completion rates by 43.6%.
arXiv Detail & Related papers (2022-02-03T18:55:52Z) - Skill Induction and Planning with Latent Language [94.55783888325165]
We formulate a generative model of action sequences in which goals generate sequences of high-level subtask descriptions.
We describe how to train this model using primarily unannotated demonstrations by parsing demonstrations into sequences of named high-level subtasks.
In trained models, the space of natural language commands indexes a library of skills; agents can use these skills to plan by generating high-level instruction sequences tailored to novel goals.
arXiv Detail & Related papers (2021-10-04T15:36:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.