論文の概要: High Volume Rate 3D Ultrasound Reconstruction with Diffusion Models
- arxiv url: http://arxiv.org/abs/2505.22090v1
- Date: Wed, 28 May 2025 08:14:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-29 17:35:50.487602
- Title: High Volume Rate 3D Ultrasound Reconstruction with Diffusion Models
- Title(参考訳): 拡散モデルを用いた高体積3次元超音波再構成
- Authors: Tristan S. W. Stevens, Oisín Nolan, Oudom Somphone, Jean-Luc Robert, Ruud J. G. van Sloun,
- Abstract要約: 三次元超音波は解剖学的構造のリアルタイムな体積可視化を可能にする。
高ボリュームと高画質の両方を達成することは、依然として大きな課題である。
本稿では,拡散モデル(DM)を用いて空間的・時間的分解能の向上を図り,新しい3次元超音波再構成手法を提案する。
- 参考スコア(独自算出の注目度): 14.007660129016852
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Three-dimensional ultrasound enables real-time volumetric visualization of anatomical structures. Unlike traditional 2D ultrasound, 3D imaging reduces the reliance on precise probe orientation, potentially making ultrasound more accessible to clinicians with varying levels of experience and improving automated measurements and post-exam analysis. However, achieving both high volume rates and high image quality remains a significant challenge. While 3D diverging waves can provide high volume rates, they suffer from limited tissue harmonic generation and increased multipath effects, which degrade image quality. One compromise is to retain the focusing in elevation while leveraging unfocused diverging waves in the lateral direction to reduce the number of transmissions per elevation plane. Reaching the volume rates achieved by full 3D diverging waves, however, requires dramatically undersampling the number of elevation planes. Subsequently, to render the full volume, simple interpolation techniques are applied. This paper introduces a novel approach to 3D ultrasound reconstruction from a reduced set of elevation planes by employing diffusion models (DMs) to achieve increased spatial and temporal resolution. We compare both traditional and supervised deep learning-based interpolation methods on a 3D cardiac ultrasound dataset. Our results show that DM-based reconstruction consistently outperforms the baselines in image quality and downstream task performance. Additionally, we accelerate inference by leveraging the temporal consistency inherent to ultrasound sequences. Finally, we explore the robustness of the proposed method by exploiting the probabilistic nature of diffusion posterior sampling to quantify reconstruction uncertainty and demonstrate improved recall on out-of-distribution data with synthetic anomalies under strong subsampling.
- Abstract(参考訳): 三次元超音波は解剖学的構造のリアルタイムな体積可視化を可能にする。
従来の2D超音波とは異なり、3Dイメージングは精密なプローブの向きへの依存を減らし、様々なレベルの経験を持つ臨床医が超音波を利用できるようになり、自動測定や検査後の分析が改善される可能性がある。
しかし、高ボリュームと高画質の両方を達成することは、依然として大きな課題である。
3次元の発散波は高い体積率が得られるが、組織調和の発生が制限され、マルチパス効果が増大し、画質が低下する。
1つの妥協は、高度面当たりの送信数を減らすために、横方向の非集中的なばらつき波を活用しながら、標高の集中を維持することである。
しかし、完全な3次元発散波によって達成される体積率を取得するには、高度面の数を劇的に下方修正する必要がある。
その後、全容を描画するために、単純な補間技法が適用される。
本稿では,空間的・時間的解像度の増大を実現するために拡散モデル(DM)を用いることにより,低高度平面からの3次元超音波再構成を提案する。
従来型および教師付きディープラーニングに基づく補間法を3次元心エコーデータセット上で比較した。
この結果から, DMに基づく再構成は, 画像品質および下流タスク性能のベースラインを一貫して上回ることがわかった。
さらに、超音波のシーケンスに固有の時間的一貫性を活用することにより、推論を高速化する。
最後に, 拡散後サンプリングの確率的性質を利用して, 再構成の不確かさを定量化し, 強力なサブサンプリング下での合成異常による分布外データの改善を実証し, 提案手法のロバスト性について検討する。
関連論文リスト
- ImplicitCell: Resolution Cell Modeling of Joint Implicit Volume Reconstruction and Pose Refinement in Freehand 3D Ultrasound [12.066225199232777]
ImplicitCell は Inlicit Neural Representation (INR) と超音波分解能セルモデルを統合した新しいフレームワークである。
実験結果から, ImplicitCell は既存手法と比較して, 復元アーチファクトを著しく低減し, ボリューム品質を向上することが示された。
論文 参考訳(メタデータ) (2025-03-09T16:40:49Z) - Enhancing Free-hand 3D Photoacoustic and Ultrasound Reconstruction using Deep Learning [3.8426872518410997]
本研究では,携帯型光音響・超音波(PAUS)画像における3次元再構成を支援するため,グローバルローカル自己保持モジュール(MoGLo-Net)を用いたモーションベース学習ネットワークを提案する。
MoGLo-Netは、連続した超音波画像内の完全に発達したスペックル領域や高発癌組織領域などの臨界領域を利用して、運動パラメータを正確に推定する。
論文 参考訳(メタデータ) (2025-02-05T11:59:23Z) - UlRe-NeRF: 3D Ultrasound Imaging through Neural Rendering with Ultrasound Reflection Direction Parameterization [0.5837446811360741]
従来の3D超音波イメージング法には、解像度の固定化、ストレージ効率の低さ、コンテキスト接続性の不足といった制限がある。
暗黙的なニューラルネットワークと明示的な超音波レンダリングアーキテクチャを組み合わせた新しいモデルUlRe-NeRFを提案する。
実験の結果,UlRe-NeRFモデルは高忠実度超音波画像再構成の現実性と精度を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2024-08-01T18:22:29Z) - 3D Vessel Reconstruction from Sparse-View Dynamic DSA Images via Vessel Probability Guided Attenuation Learning [79.60829508459753]
現在の商用デジタルサブトラクション・アンジオグラフィー(DSA)システムは通常、再構築を行うために数百のスキャンビューを要求する。
スパース・ビューDSA画像のダイナミックな血流と不十分な入力は,3次元血管再建作業において重要な課題である。
本稿では,時間に依存しない容器確率場を用いてこの問題を効果的に解くことを提案する。
論文 参考訳(メタデータ) (2024-05-17T11:23:33Z) - StableDreamer: Taming Noisy Score Distillation Sampling for Text-to-3D [88.66678730537777]
本稿では3つの進歩を取り入れた方法論であるStableDreamerを紹介する。
まず、SDS生成前の等価性と、簡単な教師付きL2再構成損失を定式化する。
第2に,画像空間拡散は幾何学的精度に寄与するが,色調の鮮明化には潜時空間拡散が不可欠であることを示す。
論文 参考訳(メタデータ) (2023-12-02T02:27:58Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
オプトアコースティック(OA)イメージングは、ナノ秒レーザーパルスによる生体組織の励起と、光吸収による熱弾性膨張によって発生する超音波の検出に基づいている。
OAイメージングは、深部組織における豊富な光学コントラストと高分解能の強力な組み合わせを特徴としている。
臨床環境でのOAの幅広い応用を促進するために、異なるタイプの実験的なセットアップと関連する処理手法で生成される標準化データセットは存在しない。
論文 参考訳(メタデータ) (2022-06-17T08:11:26Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
受信した超音波エコーを空間画像領域にマッピングするビームフォーミングは、超音波画像形成チェーンの心臓に位置する。
現代の超音波イメージングは、強力なデジタル受信チャネル処理の革新に大きく依存している。
ディープラーニング手法は、デジタルビームフォーミングパイプラインにおいて魅力的な役割を果たす。
論文 参考訳(メタデータ) (2021-09-23T15:15:21Z) - Hierarchical Amortized Training for Memory-efficient High Resolution 3D
GAN [52.851990439671475]
本稿では,高解像度な3D画像を生成することができる新しいエンドツーエンドGANアーキテクチャを提案する。
トレーニングと推論の異なる構成を使用することで、この目標を達成する。
3次元胸郭CTと脳MRIの実験により、我々のアプローチは画像生成における最先端技術より優れていることが示された。
論文 参考訳(メタデータ) (2020-08-05T02:33:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。