Knowledge Base Construction for Knowledge-Augmented Text-to-SQL
- URL: http://arxiv.org/abs/2505.22096v1
- Date: Wed, 28 May 2025 08:17:58 GMT
- Title: Knowledge Base Construction for Knowledge-Augmented Text-to-SQL
- Authors: Jinheon Baek, Horst Samulowitz, Oktie Hassanzadeh, Dharmashankar Subramanian, Sola Shirai, Alfio Gliozzo, Debarun Bhattacharjya,
- Abstract summary: We propose constructing a knowledge base for text-to-one, a foundational source of knowledge, from which we generate necessary knowledge for given queries.<n>Our knowledge base is comprehensive, which is constructed based on a combination of all available questions and their associated database schemas.<n>We validate our approach on multiple text-to-one datasets, considering both overlapping and non-overlapping database scenarios.
- Score: 37.87911346522774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-SQL aims to translate natural language queries into SQL statements, which is practical as it enables anyone to easily retrieve the desired information from databases. Recently, many existing approaches tackle this problem with Large Language Models (LLMs), leveraging their strong capability in understanding user queries and generating corresponding SQL code. Yet, the parametric knowledge in LLMs might be limited to covering all the diverse and domain-specific queries that require grounding in various database schemas, which makes generated SQLs less accurate oftentimes. To tackle this, we propose constructing the knowledge base for text-to-SQL, a foundational source of knowledge, from which we retrieve and generate the necessary knowledge for given queries. In particular, unlike existing approaches that either manually annotate knowledge or generate only a few pieces of knowledge for each query, our knowledge base is comprehensive, which is constructed based on a combination of all the available questions and their associated database schemas along with their relevant knowledge, and can be reused for unseen databases from different datasets and domains. We validate our approach on multiple text-to-SQL datasets, considering both the overlapping and non-overlapping database scenarios, where it outperforms relevant baselines substantially.
Related papers
- Datrics Text2SQL: A Framework for Natural Language to SQL Query Generation [0.0]
This paper introduces a Retrieval-Augmented Generation (RAG)-based framework designed to generate accuratesql queries by leveraging structured documentation, example-based learning, and domain-specific rules.<n>The paper details the architecture, training methodology, and retrieval logic, highlighting how the system bridges the gap between user intent and database structure without requiringsql expertise.
arXiv Detail & Related papers (2025-04-03T21:09:59Z) - Text2SQL is Not Enough: Unifying AI and Databases with TAG [47.45480855418987]
Table-Augmented Generation (TAG) is a paradigm for answering natural language questions over databases.
We develop benchmarks to study the TAG problem and find that standard methods answer no more than 20% of queries correctly.
arXiv Detail & Related papers (2024-08-27T00:50:14Z) - Structure Guided Large Language Model for SQL Generation [14.079764882536077]
We propose a novel structure-aware text-to- query and framework(SGU)<n>SGU-aware text-to- query and framework(SGU) consistently outperforms state-of-the-art text-to-models.
arXiv Detail & Related papers (2024-02-19T09:07:59Z) - Knowledge-to-SQL: Enhancing SQL Generation with Data Expert LLM [15.888784472807775]
Existing methods rely on the comprehensive capability of large language models (LLMs) to generate queries.
We propose the Knowledge-to- Data Expert framework, which employs tailored knowledge for all text-to- models.
arXiv Detail & Related papers (2024-02-18T09:10:04Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when relying on their internal knowledge.
Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge.
arXiv Detail & Related papers (2023-10-31T04:37:57Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z) - Towards Knowledge-Intensive Text-to-SQL Semantic Parsing with Formulaic
Knowledge [54.85168428642474]
We build a new Chinese benchmark Know consisting of domain-specific questions covering various domains.
We then address this problem by presenting formulaic knowledge, rather than by annotating additional data examples.
More concretely, we construct a formulaic knowledge bank as a domain knowledge base and propose a framework (ReGrouP) to leverage this formulaic knowledge during parsing.
arXiv Detail & Related papers (2023-01-03T12:37:47Z) - AskYourDB: An end-to-end system for querying and visualizing relational
databases using natural language [0.0]
We propose a semantic parsing approach to address the challenge of converting complex natural language into SQL.
We modified state-of-the-art models, by various pre and post processing steps which make the significant part when a model is deployed in production.
To make the product serviceable to businesses we added an automatic visualization framework over the queried results.
arXiv Detail & Related papers (2022-10-16T13:31:32Z) - Dual Reader-Parser on Hybrid Textual and Tabular Evidence for Open
Domain Question Answering [78.9863753810787]
A large amount of world's knowledge is stored in structured databases.
query languages can answer questions that require complex reasoning, as well as offering full explainability.
arXiv Detail & Related papers (2021-08-05T22:04:13Z) - Translating synthetic natural language to database queries: a polyglot
deep learning framework [0.0]
Polyglotter supports the mapping of natural language searches to database queries.
It does not require the creation of manually annotated data for training.
Our results indicate that our framework performs well on both synthetic and real databases.
arXiv Detail & Related papers (2021-04-14T17:43:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.