Advancing Hearing Assessment: An ASR-Based Frequency-Specific Speech Test for Diagnosing Presbycusis
- URL: http://arxiv.org/abs/2505.22231v1
- Date: Wed, 28 May 2025 11:06:22 GMT
- Title: Advancing Hearing Assessment: An ASR-Based Frequency-Specific Speech Test for Diagnosing Presbycusis
- Authors: Stefan Bleeck,
- Abstract summary: Traditional audiometry fails to fully characterize the functional impact of hearing loss on speech understanding.<n>This paper presents the development and simulated evaluation of a novel Automatic Speech Recognition (ASR)-based frequency-specific speech test.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional audiometry often fails to fully characterize the functional impact of hearing loss on speech understanding, particularly supra-threshold deficits and frequency-specific perception challenges in conditions like presbycusis. This paper presents the development and simulated evaluation of a novel Automatic Speech Recognition (ASR)-based frequency-specific speech test designed to provide granular diagnostic insights. Our approach leverages ASR to simulate the perceptual effects of moderate sloping hearing loss by processing speech stimuli under controlled acoustic degradation and subsequently analyzing phoneme-level confusion patterns. Key findings indicate that simulated hearing loss introduces specific phoneme confusions, predominantly affecting high-frequency consonants (e.g., alveolar/palatal to labiodental substitutions) and leading to significant phoneme deletions, consistent with the acoustic cues degraded in presbycusis. A test battery curated from these ASR-derived confusions demonstrated diagnostic value, effectively differentiating between simulated normal-hearing and hearing-impaired listeners in a comprehensive simulation. This ASR-driven methodology offers a promising avenue for developing objective, granular, and frequency-specific hearing assessment tools that complement traditional audiometry. Future work will focus on validating these findings with human participants and exploring the integration of advanced AI models for enhanced diagnostic precision.
Related papers
- (SimPhon Speech Test): A Data-Driven Method for In Silico Design and Validation of a Phonetically Balanced Speech Test [0.0]
We introduce the Simulated Phoneme Speech Test (SimPhon Speech Test) methodology.<n>By processing speech stimuli under controlled acoustic degradation, we first identify the most common phoneme confusion patterns.<n>These patterns then guide the data-driven curation of a large set of candidate word pairs.<n>The diagnostic performance of the SimPhon Speech Test-25 test items shows no significant correlation with predictions from the standard Speech Intelligibility Index.
arXiv Detail & Related papers (2025-06-13T09:43:27Z) - Towards Robust Automated Perceptual Voice Quality Assessment with Speech Foundation Models [39.31175048498422]
VOQANet is a deep learning framework with an attention mechanism to extract high-level acoustic and prosodic information from raw speech.<n> VOQANet+ integrates handcrafted acoustic features such as jitter, shimmer, and harmonics-to-noise ratio (HNR) with SFM embeddings into a hybrid representation.<n>Results show that sentence-based input outperforms vowel-based input, particularly at the patient level.
arXiv Detail & Related papers (2025-05-27T15:48:17Z) - Developing vocal system impaired patient-aimed voice quality assessment approach using ASR representation-included multiple features [0.4681310436826459]
This article showcases the utilization of automatic speech recognition and self-supervised learning representations, pre-trained on extensive datasets of normal speech.
Experiments involve checks on PVQD dataset, covering various causes of vocal system damage in English, and a Japanese dataset focusing on patients with Parkinson's disease.
The results on PVQD reveal a notable correlation (>0.8 on PCC) and an extraordinary accuracy (0.5 on MSE) in predicting Grade, Breathy, and Asthenic indicators.
arXiv Detail & Related papers (2024-08-22T10:22:53Z) - Exploring Speech Pattern Disorders in Autism using Machine Learning [12.469348589699766]
This study presents a comprehensive approach to identify distinctive speech patterns through the analysis of examiner-patient dialogues.
We extracted 40 speech-related features, categorized into frequency, zero-crossing rate, energy, spectral characteristics, Mel Frequency Cepstral Coefficients (MFCCs) and balance.
The classification model aimed to differentiate between ASD and non-ASD cases, achieving an accuracy of 87.75%.
arXiv Detail & Related papers (2024-05-03T02:59:15Z) - Lightly Weighted Automatic Audio Parameter Extraction for the Quality
Assessment of Consensus Auditory-Perceptual Evaluation of Voice [18.8222742272435]
The proposed method utilizes age, sex, and five audio parameters: jitter, absolute jitter, shimmer, harmonic-to-noise ratio (HNR), and zero crossing.
The result reveals that our approach performs similar to state-of-the-art (SOTA) methods, and outperforms the latent representation obtained by using popular audio pre-trained models.
arXiv Detail & Related papers (2023-11-27T07:19:22Z) - Leveraging Pretrained Representations with Task-related Keywords for
Alzheimer's Disease Detection [69.53626024091076]
Alzheimer's disease (AD) is particularly prominent in older adults.
Recent advances in pre-trained models motivate AD detection modeling to shift from low-level features to high-level representations.
This paper presents several efficient methods to extract better AD-related cues from high-level acoustic and linguistic features.
arXiv Detail & Related papers (2023-03-14T16:03:28Z) - Ontology-aware Learning and Evaluation for Audio Tagging [56.59107110017436]
Mean average precision (mAP) metric treats different kinds of sound as independent classes without considering their relations.
Ontology-aware mean average precision (OmAP) addresses the weaknesses of mAP by utilizing the AudioSet ontology information during the evaluation.
We conduct human evaluations and demonstrate that OmAP is more consistent with human perception than mAP.
arXiv Detail & Related papers (2022-11-22T11:35:14Z) - Investigation of Data Augmentation Techniques for Disordered Speech
Recognition [69.50670302435174]
This paper investigates a set of data augmentation techniques for disordered speech recognition.
Both normal and disordered speech were exploited in the augmentation process.
The final speaker adapted system constructed using the UASpeech corpus and the best augmentation approach based on speed perturbation produced up to 2.92% absolute word error rate (WER)
arXiv Detail & Related papers (2022-01-14T17:09:22Z) - Spectro-Temporal Deep Features for Disordered Speech Assessment and
Recognition [65.25325641528701]
Motivated by the spectro-temporal level differences between disordered and normal speech that systematically manifest in articulatory imprecision, decreased volume and clarity, slower speaking rates and increased dysfluencies, novel spectro-temporal subspace basis embedding deep features derived by SVD decomposition of speech spectrum are proposed.
Experiments conducted on the UASpeech corpus suggest the proposed spectro-temporal deep feature adapted systems consistently outperformed baseline i- adaptation by up to 263% absolute (8.6% relative) reduction in word error rate (WER) with or without data augmentation.
arXiv Detail & Related papers (2022-01-14T16:56:43Z) - HASA-net: A non-intrusive hearing-aid speech assessment network [52.83357278948373]
We propose a DNN-based hearing aid speech assessment network (HASA-Net) to predict speech quality and intelligibility scores simultaneously.
To the best of our knowledge, HASA-Net is the first work to incorporate quality and intelligibility assessments utilizing a unified DNN-based non-intrusive model for hearing aids.
Experimental results show that the predicted speech quality and intelligibility scores of HASA-Net are highly correlated to two well-known intrusive hearing-aid evaluation metrics.
arXiv Detail & Related papers (2021-11-10T14:10:13Z) - Bulbar ALS Detection Based on Analysis of Voice Perturbation and Vibrato [68.97335984455059]
The purpose of this work was to verify the sutability of the sustain vowel phonation test for automatic detection of patients with ALS.
We proposed enhanced procedure for separation of voice signal into fundamental periods that requires for calculation of measurements.
arXiv Detail & Related papers (2020-03-24T12:49:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.